www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Äquivalenz von Mengen
Äquivalenz von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Mengen: Beweisen von Aussagen
Status: (Frage) beantwortet Status 
Datum: 02:22 Mi 03.11.2021
Autor: asg

Aufgabe
Seien A, B Mengen. Zeige
A = B [mm] \gdw [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B

Hallo zusammen,

bei der Lösung dieser Aufgabe bin ich mir nicht sicher, ob ich es richtig gemacht habe.

Ich muss die beiden Implikationen gezeigt werden:

1. A = B [mm] \Rightarrow [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B
2. A = B [mm] \Leftarrow [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B

Zu 1.

A = B [mm] \Rightarrow [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B

Äquivalenzumformung der linken Seite:

Idempotenz Gesetz (In unserem Skript wird aber Idemp. Ges. nicht erwähnt!)
A = B [mm] \gdw [/mm] A [mm] \cup [/mm] A =  B [mm] \cup [/mm] B

Nach Voraussetzung
[mm] \gdw [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B

Somit ist die Implikation gezeigt.

Zu 2.
A = B [mm] \Leftarrow [/mm] A [mm] \cup [/mm] B = A [mm] \cap [/mm] B

[mm] \gdw [/mm]
A [mm] \cup [/mm] B = A [mm] \cap [/mm] B [mm] \Rightarrow [/mm] A = B

nach Voraussetzung
[mm] \gdw [/mm] A [mm] \cup [/mm] B = A [mm] \cup [/mm] B [mm] \Rightarrow [/mm] A = B

daraus folgt sofort A = B.

Somit sind beide Implikationen gezeigt.

Ist es eigentlich richtig, oder habe ich etwas übersehen?

Danke für jede Hilfe :)

Viele Grüße
Asg


        
Bezug
Äquivalenz von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 03.11.2021
Autor: Gonozal_IX

Hiho,

ich fang mal unten an.

> Ist es eigentlich richtig, oder habe ich etwas übersehen?

Naja, du hast übersehen, dass hier etwas zu beweisen ist.
Getan hast du bisher noch nix.
Du weißt offensichtlich auch nicht, wann du [mm] \gdw [/mm] oder [mm] \Rightarrow [/mm] zu verwenden hast…

Fangen wir mal mit der trivialen Richtung [mm] $\Rightarrow$ [/mm] an.
Gegeben ist: $A=B$.
z.Z. [mm] $A\cup [/mm] B = [mm] A\cap [/mm] B$

Wir fangen links an und enden rechts, so dass am Ende eine Gleichungskette rauskommt der Form: $A [mm] \cup [/mm] B = [mm] \ldots [/mm] = A [mm] \cap [/mm] B$.
Verwenden dürfen wir dabei, dass $A=B$ gilt.

Ich fang mal an, du begründest die Gleichheitszeichen und du machst zu Ende:

$A [mm] \cup [/mm] B [mm] \stackrel{1}{=} [/mm] A [mm] \cup [/mm] A  [mm] \stackrel{2}{=} [/mm] A [mm] \stackrel{3}{=} [/mm] A [mm] \cap [/mm] A = [mm] \ldots$ [/mm]

Die Rückrichtung ist noch einfacher und kommt ohne Gleichungskette aus.
Es gilt für beliebige A und B die Relation $A [mm] \cap [/mm] B [mm] \subseteq [/mm] A [mm] \subseteq A\cup [/mm] B$
Aus der Voraussetzung folgt nun was?
Analog für B.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de