www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Äquivalenz zeigen
Äquivalenz zeigen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Mi 20.04.2005
Autor: Katinka_Kalinka

So, eine Aufgabe auf meinem Blatt bereitet mir noch Probleme. Seit zwei Tagen probiere ich immer mal wieder an einer Äquivalenz herum, allerdings will mir die eine Richtung partout nicht gelingen, egal, wie ich es anstelle ...

Es geht um folgendes:

Es seien w, z [mm]\in \IC[/mm]. Zeigen Sie:
[mm]\left|w-z\right| = \left|1-\bar{w}z\right| <=> \left|z\right| = 1 oder \left|w\right| = 1, \bar{w}z \ne 1[/mm]

Die Rückrichtung habe ich, aber bei der Hinrichtung komme ich einfach nicht weiter ... Ich habe zwar die Vermutung, dass es wohl Sinn machen würde, das Ganze als Bruch zu schreiben und dann die Betragstriche statt oben und unten gesamt zu ziehen, aber auch dann komme ich immer wieder in eine Sackgasse ...

Weiß jemand einen Ansatz?

Vielen Dank
Katinka



ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz zeigen: Rückfrage
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 20.04.2005
Autor: banachella

Hallo Kalinka!

Leider bin ich mir nicht ganz sicher, was du zeigen willst. Soll das

[mm]\left|w-z\right| = \left|1-\bar{w}z\right| <=> \left(\left|z\right| = 1\mbox{ oder }\left|w\right| = 1\right)\mbox{ und }\bar{w}z \ne 1[/mm]
heißen oder
[mm]\left|w-z\right| = \left|1-\bar{w}z\right| <=> \left|z\right| = 1\mbox{ oder }\left(\left|w\right| = 1\mbox{ und }\bar{w}z \ne 1\right)[/mm]?

Wahrscheinlich eher zweiteres, ansonsten wäre $z=w=1$ ein Gegenbeispiel...

Abgesehen davon folgt unter der Bedingung, dass [mm] $\bar [/mm] wz=1$, dass $|w|=1$, und nicht $|z|=1$.

Vielleicht verkucke ich mich auch einfach, aber könntest du vielleicht nochmal in deiner Angabe nachsehen?

Gruß, banachella

Bezug
                
Bezug
Äquivalenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 20.04.2005
Autor: Katinka_Kalinka

Hallo!

Also, Voraussetzung ist, dass [mm]\bar{w}z \ne 1[/mm], somit fällt dann das Gegenbeispiel w=z=1 schonmal raus. Unter dieser Voraussetzung soll ich zeigen, dass folgende Aussage gilt:

[mm](\left|w-z\right| = \left|1-\bar{w}z\right|) => (\left|z\right| = 1 oder \left|w|\right = 1)[/mm]

Ist es jetzt verständlicher?

Bezug
                        
Bezug
Äquivalenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 20.04.2005
Autor: banachella

Da [mm] $|w-z|=|1-\bar [/mm] wz|$ ist [mm] $|w-z|^2=|1-\bar wz|^2$ [/mm] gilt:

[mm] $|w-z|^2=(w-z)(\bar w-\bar z)=|w|^2-z\bar [/mm] w - [mm] \bar [/mm] z [mm] w+\|z\|^2$ [/mm]
und
[mm] $|1-\bar wz|^2=1-\bar wz-w\bar z+|w|^2|z|^2$. [/mm]

Insgesamt:
[mm] $0=|w-z|^2-|1-\bar wz|^2=|w|^2-z\bar [/mm] w - [mm] \bar [/mm] z [mm] w+\|z\|^2-1+\bar wz+w\bar z-|w|^2|z|^2=(1-|w|^2)(1-|z|^2)$ [/mm]

Gruß, banachella

Bezug
                                
Bezug
Äquivalenz zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Mi 20.04.2005
Autor: Katinka_Kalinka

Ach, wie doof. Mit diesen Operationen hatte ich auch schon rumprobiert, aber darauf bin ich leider so gar nicht gekommen.

Vielen, vielen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de