www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Äquivalenz zwischen Normen
Äquivalenz zwischen Normen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz zwischen Normen: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 03.05.2012
Autor: kullinarisch

Aufgabe
Wie  betrachten die Normen [mm] ||z||_{\infty}=max\{|z_1|,...,|z_n|\}, ||z||_2=\wurzel[]{|z_1|^2+...+|z_n|^2} [/mm] und [mm] ||z||_1=|z_1|+...+|z_n| [/mm] auf [mm] \IC^n. [/mm] Finde maximale Konstanten [mm] c_0, c_1 [/mm] und minimale Konstanten [mm] C_0, C_1 [/mm] mit

(a) [mm] c_0||.||_{\infty}\le ||.||_2\le C_0||.||_{\infty} [/mm]

(b) [mm] c_1||.||_1\le ||.||_2 \le C_1||.||_1 [/mm]

Hallo. Ich habe mich schon ein wenig mit der Aufgabe beschäftigt, dabei jede Menge Frust aufgebaut und mir in der Konsequenz davon wahrscheinlich eine kräftige Denkblockade eingeheimst. Lediglich die Konstante [mm] C_0 [/mm] von (a) konnte ich entlarven, mit der Abschätzung:

[mm] ||z||_2\le \wurzel[]{n*||z||^2_{\infty}}=\wurzel[]{n}*||z||_{\infty} [/mm] also [mm] C_0=\wurzel[]{n} [/mm]

Ich habe mir auch alle 3 Kreisscheiben bezüglich der verschiedenen Normen und Radius 1 in [mm] \IR^2 [/mm] gezeichnet, aber mehr als Vermutungen konnte ich dabei nicht rausholen. Es scheint hier generell nicht ein allgemeinen Lösungsweg zu geben, den man immer wieder bestreiten kann, oder etwa doch?
Ich komme nicht weiter! Wie geht man denn am besten vor, wenn man solche Konstanten (egal welche 2 Normen man jetzt betrachtet) finden möchte? Ich finde es alles andere als offensichtlich, wie diese hier aussehen sollten!

Ein paar weiterbringende Tipps oder Denkanstöße und ich bin für heute ein glücklicher Mensch!  

Grüße, kulli

        
Bezug
Äquivalenz zwischen Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 04.05.2012
Autor: fred97

2 Beispiele:

1. [mm] $||z||_1= \summe_{j=1}^{n}1*|z_j| \le \wurzel{n}||z||_2$ [/mm]  Für das [mm] \le [/mm] bemühe die Cauchy-Schwarzsche Ungl.


2. Mit einem j [mm] \in \{1,...,n\} [/mm] ist

[mm] $||z||_{\infty}=|z_j| [/mm] = [mm] \wurzel{|z_j|^2} \le ||z||_2. [/mm]



FRED

Bezug
                
Bezug
Äquivalenz zwischen Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Fr 04.05.2012
Autor: kullinarisch

Danke, ein guter Tipp!

zu 1): für w=(1, 1, [mm] ....,1)^T [/mm] gilt für [mm] ||=|\summe_{j=1}^{n} z_j*1|\le \summe_{j=1}^{n}|z_j|\le ||z||_2 *\wurzel[]{1^2+...+1^2}= [/mm]
[mm] ||z||_2 *\wurzel[]{n} [/mm]

[mm] \Rightarrow \bruch{1}{\wurzel[]{n}}*||z||_1\le ||z||_2 [/mm]

Aber wieso gilt denn [mm] ||z||_2\le ||z||_1 [/mm] ? An sich logisch, aber die Begründung fehlt mir.




Bezug
                        
Bezug
Äquivalenz zwischen Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Sa 05.05.2012
Autor: SEcki


> Aber wieso gilt denn [mm]||z||_2\le ||z||_1[/mm] ? An sich logisch,
> aber die Begründung fehlt mir.

[m]\sqrt{a+b}\le \sqrt{a}+\sqrt{b}[/m].

SEcki


Bezug
                                
Bezug
Äquivalenz zwischen Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Sa 05.05.2012
Autor: kullinarisch

Hi, Wieso gilt das so? Ist das von einer bekannten Ungleichungg abgeleitet?

Bezug
                                        
Bezug
Äquivalenz zwischen Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 So 06.05.2012
Autor: fred97


> Hi, Wieso gilt das so? Ist das von einer bekannten
> Ungleichungg abgeleitet?


Quadriere

$ [mm] \sqrt{a+b}\le \sqrt{a}+\sqrt{b} [/mm] $.


fred


Bezug
                                                
Bezug
Äquivalenz zwischen Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 So 06.05.2012
Autor: kullinarisch

Ok leuchtet ein, danke fred!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de