www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Äquivalenzaussagen
Äquivalenzaussagen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 So 23.11.2014
Autor: questionpeter

Aufgabe
Sei [mm] (X,\mu) [/mm] Maßraum und [mm] \nu,\rho [/mm] reelle Maße auf [mm] \mathcal{A} [/mm]
a) Für A [mm] \in \mathcal{A} [/mm] sind folgende Aussagen äquivalent:

(i) A ist [mm] \nu-Nullmenge. [/mm]
(ii) A ist eine [mm] \nu^{+}- [/mm] und eine [mm] \nu^{-}-Nullmenge. [/mm]
(iii) A ist eine [mm] |\nu|-Nullmenge. [/mm]

b) Folgende Aussagen sind äquivalent:
(i) [mm] \nu \perp \rho; [/mm]
(ii) [mm] \nu^{+} \perp \rho [/mm] und [mm] \nu^{-} \perp \rho, [/mm]
(iii) [mm] |\nu| \perp \rho; [/mm]
(iv) [mm] |\nu| \perp |\rho| [/mm]

hallo,
sitze gerade vor diese aufgabe und weiiß nicht so richtig wie ich anfangen soll. ich hoffe ihr könnt mir dabei helfen.

also Nullmenge ist so def. dass eine Teilmenge A [mm] \in \mathcal{A} [/mm] das maß null hat.
und es gilt [mm] \nu =\nu_{+}-\nu_{-} [/mm]  und  [mm] |\nu|=\nu_{+}+\nu_{-}. [/mm] inde vorlesung habe ich einen folg. Satz gefunden  names  "Hahns Zerlegungssatz" das folg def ist:

Sei [mm] \nu: \mathcal{A}\rightarrow \IR [/mm] reelwertiges Maß. [mm] \exists [/mm] disjunkte messbare Mengen [mm] X_{-}, X_{+} \subset [/mm] X mit
  [mm] x=X_{-} \cup X_{+}, [/mm] s.d. [mm] \nu(A\cap X_{+})\le [/mm] 0 und [mm] -\nu(A\cap X_{-}). [/mm]
Dann sind [mm] \nu_{+} [/mm] und [mm] \nu_{-} [/mm] positive Maße.

Sei [mm] f=1_{X_{+}}-1_{X_{-}}. [/mm] Dann folgt
[mm] \nu(A)=\integral_{A}fd|\nu| [/mm] wobei [mm] |\nu| [/mm]  wie oben def. ist.
falls ich mit diesen Satz es zeigen soll. Wie fange ich am besten anfangen
könnt ihr es mir anhand aussage (i) [mm] \Rightarrow [/mm] (ii) zeigen evtl.

dankeschön im voraus

questionpeter

        
Bezug
Äquivalenzaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 So 23.11.2014
Autor: fred97

Ich versteh Dein Pronlem nicht. Du sollst zeigen:

[mm] \mu(A) [/mm] =0    [mm] \gdw [/mm]   (   [mm] \nu_+(A) [/mm] =0   und [mm] \nu_-(A)=0 [/mm] )   [mm] \gdw |\nu|(A)=0. [/mm]



Das kriegst Du doch locker mit den Def. von [mm] \nu_+, \nu_- [/mm]  und [mm] |\nu| [/mm] hin.

FRED

Bezug
                
Bezug
Äquivalenzaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 23.11.2014
Autor: questionpeter

danke nochmals.war wirklich sehr einfach
aber jetzt zu teil b) wie  mache ich es dort jetzt.
wenn ich zwei Teilmenge definiere z.B A,B [mm] \in [/mm] mathcal{A} dann sei A [mm] \nu-Nullmenge [/mm] und B [mm] \rho-Nullmenge [/mm] und [mm] \nu \perp \rho. [/mm]

aber wie kann ich daraus folg. dass [mm] \nu_+\perp \rho [/mm] und [mm] \nu_{-}\perp\rho? [/mm]

sorry dass ich evtl. mich doof anstelle, aber machmal sieht man vor lauter vielen bäumen nichts.

Bezug
                        
Bezug
Äquivalenzaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:58 Mo 24.11.2014
Autor: fred97


> danke nochmals.war wirklich sehr einfach
>  aber jetzt zu teil b) wie  mache ich es dort jetzt.
>  wenn ich zwei Teilmenge definiere z.B A,B [mm]\in[/mm] mathcal{A}
> dann sei A [mm]\nu-Nullmenge[/mm] und B [mm]\rho-Nullmenge[/mm] und [mm]\nu \perp \rho.[/mm]
>  
> aber wie kann ich daraus folg. dass [mm]\nu_+\perp \rho[/mm] und
> [mm]\nu_{-}\perp\rho?[/mm]
>  
> sorry dass ich evtl. mich doof anstelle, aber machmal sieht
> man vor lauter vielen bäumen nichts.


Es gelte  [mm]\nu \perp \rho.[/mm]

Das bedeutet: es ex. B [mm] \in \mathcal{A} [/mm]  mit [mm] \nu(B)=0 [/mm] und [mm] \rho(X \setminus [/mm] B)=0

Aus a) folgt doch dann sofort: $ [mm] \nu_+\perp \rho [/mm] $ und $ [mm] \nu_{-}\perp\rho [/mm] $  und [mm] $|\nu| \perp \rho$ [/mm]


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de