www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalenzrelation
Äquivalenzrelation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Fr 04.11.2005
Autor: Skydiver

Hallo.

Stehe vor folgender Aufgabe:

Ich muss die Äquivalenzrelation mit Hilfe der Relation R beschreiben, dass heißt ich muss angeben welche Bedingungen R zu erfüllen hat, um eine Äquivalenzrelation zu sein.

Das soll folgendermaßen aussehen:

reflexiv:  [mm] I_A \subseteq [/mm] R, wobei R [mm] \subseteq [/mm] A x A und [mm] I_A [/mm] die Identität auf A ist
symetrisch: R = R', wobei R' die konverse Relation zu R ist
und transitiv: RR [mm] \subseteq [/mm] R

nun Frage ich mich, ob man diese drei Bedingungen irgendwie zusammenfassen kann, zum Beispiel kann man für die Halbordnung die Reflexivität, Antisymetrie (R [mm] \cap [/mm] R' [mm] \subseteq I_A) [/mm] und Transitivität zusammenfassen in R [mm] \cap [/mm] R' =  [mm] I_A [/mm] und RR [mm] \subseteq [/mm] R;

Ich hab schon ziemlich viel herum probiert, mit Vereinigungen oder R durch R' ersetzten bei der Transitivität, komm aber auf keine Möglichkeit wie man  die Bedingungen noch zusammmenfassen könnte.

Hat jemand von euch einen Tipp, oder ist das gar nich möglich??

Vielen Dank.
mfg.

        
Bezug
Äquivalenzrelation: Lösungsvorschlag
Status: (Antwort) fertig Status 
Datum: 14:18 Fr 04.11.2005
Autor: Galois

Hallo Skydiver!

Was für eine nette, kleine und garantiert zweckfreie Fragestellung... ;-)

Wie würde Dir [mm] $RR\cup I_A\subseteq [/mm] R'$ gefallen?

Ich nehme an, den entsprechenden Beweis schaffst Du selbst, oder?

Grüße,
Galois


[]Bonner Matheforum

Bezug
                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Fr 04.11.2005
Autor: Skydiver

Hallo.

Besten Dank!!

Jedoch bin ich mir noch nicht ganz sicher ob die Formel stimmt.

Angenommen es gilt aRb und bRc, dann folgt aus deiner Formel aR'c oder cRa; ich brauche aber für die Transitivität aRc;
wenn ich RR [mm] \cup I_A [/mm] [mm] \subseteq [/mm] R' = R nehme, würde es passen, das ist aber dann auch wieder keine Vereinfachung zum Ursprüunglichen.

Ist mein Einwand richtig, oder hab ich was falsch verstanden??

mfg.

Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Fr 04.11.2005
Autor: Galois

Hallo Skydiver!

> Ist mein Einwand richtig, oder hab ich was falsch
> verstanden??

Man benötigt einen Zwischenschritt.

Zum Beweis der Transitivität:

Aus [mm] $RR\cup I_A\subseteq [/mm] R'$ folgt [mm] $I_A\subseteq [/mm] R'$, hieraus [mm] $I_A\subseteq [/mm] R$.
Damit ist aber [mm] $R=I_AR\subseteq RR\subseteq [/mm] R'$.
Und aus [mm] $R\subseteq [/mm] R'$ folgt wiederum [mm] $R'\subseteq [/mm] R$, also Gleichheit!

Grüße,
Galois


[]Bonner Matheforum

Bezug
        
Bezug
Äquivalenzrelation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:54 Sa 05.11.2005
Autor: Bens

Mit <h,g> ist die Ebene gemeint, die durch die beiden Geraden g und h gebildet wird. Wenn ich wüsste, wie ich eine Äquivalenzrelation für zwei parallele Ebenen aufstellen muss, dann hätte ich die Frage nicht gestellt!  

Bezug
                
Bezug
Äquivalenzrelation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:26 Di 08.11.2005
Autor: Loddar

Hallo Bens!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de