www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenzrelation
Äquivalenzrelation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Sa 06.05.2006
Autor: Riley

Aufgabe
Es sei (G,o) eine Gruppe und H eine Untergruppe.
a) Man zeige, dass durch [mm] (g_1,g_2) [/mm] aus R  : [mm] \gdw g_1^{-1} [/mm] o [mm] g_2 [/mm] aus H eine Äquivalenzrelation auf G gegeben wird.
b) Wir nehmen an, dass man durch [mm] [g_1] [/mm] * [mm] [g_2] [/mm] := [mm] [g_1 [/mm] o [mm] g_2] [/mm] eine Abbildung (G/R) x (G/R) -> (G/R) definieren kann. Man zeige, dass dann für alle g aus G und h aus H gilt:
[mm] g^{-1} [/mm] o h o g aus H.

hi! könnt ihr mir bitte helfen diese aufgabe zu lösen?
bei der a) hab ich versucht die 3 eigenschaften nachzuweisen:
1.)Reflexivität:
[mm] (g_1,g_1) [/mm] aus R , da [mm] g_1^{-1} [/mm] o [mm] g_1 [/mm] aus H (untergruppe)
2.) Symmetrie
[mm] (g_1,g_2) [/mm] aus R [mm] \gdw (g_2,g_1) [/mm] aus R
also [mm] g_1^{-1} [/mm] o [mm] g_2 [/mm] aus H [mm] \gdw g_2^{-1} [/mm] o [mm] g_1 [/mm] aus H
3.) Transitivität
[mm] (g_1,g_2) [/mm] uas R , [mm] (g_2,g_3) [/mm] aus R [mm] \gdw (g_1,g_3) [/mm] aus R
[mm] g_1^{-1} [/mm] o [mm] g_2 [/mm] aus H [mm] \gdw g_2^{-1} [/mm] o [mm] g_3 [/mm] aus H [mm] \gdw g_1^{-1} og_3 [/mm] aus H

und bei der b weiß ich leider gar nicht wie ich das zeigen kann...?

gruß riley

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Sa 06.05.2006
Autor: felixf

Hallo Riley!

> Es sei (G,o) eine Gruppe und H eine Untergruppe.
>  a) Man zeige, dass durch [mm](g_1,g_2)[/mm] aus R  : [mm]\gdw g_1^{-1}[/mm]
> o [mm]g_2[/mm] aus H eine Äquivalenzrelation auf G gegeben wird.
>  b) Wir nehmen an, dass man durch [mm][g_1][/mm] * [mm][g_2][/mm] := [mm][g_1[/mm] o
> [mm]g_2][/mm] eine Abbildung (G/R) x (G/R) -> (G/R) definieren kann.
> Man zeige, dass dann für alle g aus G und h aus H gilt:
>  [mm]g^{-1}[/mm] o h o g aus H.
>  hi! könnt ihr mir bitte helfen diese aufgabe zu lösen?
>  bei der a) hab ich versucht die 3 eigenschaften
> nachzuweisen:
>  1.)Reflexivität:
>  [mm](g_1,g_1)[/mm] aus R , da [mm]g_1^{-1}[/mm] o [mm]g_1[/mm] aus H (untergruppe)

Genau.

>  2.) Symmetrie
>  [mm](g_1,g_2)[/mm] aus R [mm]\gdw (g_2,g_1)[/mm] aus R
>  also [mm]g_1^{-1}[/mm] o [mm]g_2[/mm] aus H [mm]\gdw g_2^{-1}[/mm] o [mm]g_1[/mm] aus H

Warum gilt das? (Tipp: Was ist $(g [mm] \circ h)^{-1}$?) [/mm]

>  3.) Transitivität
>  [mm](g_1,g_2)[/mm] uas R , [mm](g_2,g_3)[/mm] aus R [mm]\gdw (g_1,g_3)[/mm] aus R

So ist das sicher nicht formuliert. Das ist naemlich fuer fast alle Aequivalenzrelationen falsch! (Hint: [mm] $\Rightarrow$ [/mm] anstatt [mm] $\gdw$!) [/mm]

>  [mm]g_1^{-1}[/mm] o [mm]g_2[/mm] aus H [mm]\gdw g_2^{-1}[/mm] o [mm]g_3[/mm] aus H [mm]\gdw g_1^{-1} og_3[/mm] aus H

Die Aequivalenzzeichen [mm] ($\gdw$) [/mm] in der letzten Zeile meinst du nicht ernst, oder?!

LG Felix


Bezug
                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Sa 06.05.2006
Autor: Riley

hi felix!
oops, sorry, das waren zu viele äquivalenzzeichen...
zur transitivität:
[mm] g_1^{-1} [/mm] o [mm] g_2 [/mm] aus H   [mm] \wedge g_2^{-1} [/mm] o [mm] g_3 [/mm] aus H  [mm] \Rightarrow g_1^{-1} [/mm]  o    [mm] g_3 [/mm] aus H.
so ists besser, oder? nur begründen kann ich das nicht...

hm, bei der symmetrie weiß ich auch noch nicht weiter was  (g o [mm] h)^{-1} [/mm] ist...?

Bezug
                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 06.05.2006
Autor: felixf

Hallo Riley!

>  oops, sorry, das waren zu viele äquivalenzzeichen...
>  zur transitivität:
>  [mm]g_1^{-1}[/mm] o [mm]g_2[/mm] aus H   [mm]\wedge g_2^{-1}[/mm] o [mm]g_3[/mm] aus H  
> [mm]\Rightarrow g_1^{-1}[/mm]  o    [mm]g_3[/mm] aus H.
>  so ists besser, oder?

Genau.

> nur begründen kann ich das nicht...

Du hast [mm] $g_1^{-1} \circ g_2, g_2^{-1} \circ h_3 \in [/mm] H$, und wenn du zwei Elemente aus $H$ miteinander verknuepfst liegt das Ergebnis wieder in $H$. Bringt dich das auf eine Idee?

> hm, bei der symmetrie weiß ich auch noch nicht weiter was  
> (g o [mm]h)^{-1}[/mm] ist...?

Also $(g [mm] \circ h)^{-1}$ [/mm] ist [mm] $h^{-1} \circ g^{-1}$. [/mm]

LG Felix



Bezug
                                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Sa 06.05.2006
Autor: Riley

Hi felix!
aha, danke für die tipps *idee*, meinst du so bei der transitivität:

[mm] (g_1^{-1} [/mm] o  [mm] g_2) [/mm] o [mm] (g_2^{-1} [/mm]  o [mm] g_3 [/mm] ) = [mm] g_1^{-1} [/mm] o [mm] g_3 \in [/mm] H, das sich [mm] g_2 [/mm] o [mm] g_2^{-1} [/mm] weghebt?
und bei einer untergruppe die verknüpfung zweier Elemente wieder in der Untergruppe liegt?

und zur Symmetrie:
[mm] (g_1^{-1} [/mm]  o  [mm] g_2)^{-1} [/mm] = [mm] g_2^{-1} [/mm]  o [mm] (g_1^{-1})^{-1} [/mm] = [mm] g_2^{-1} [/mm]  o [mm] g_1 \in [/mm] H, da das Inverselement auch wieder in der Untergruppe sein muss?

grüßle riley


Bezug
                                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 06.05.2006
Autor: felixf

Hoi Riley!

>  aha, danke für die tipps *idee*, meinst du so bei der
> transitivität:
>  
> [mm](g_1^{-1}[/mm] o  [mm]g_2)[/mm] o [mm](g_2^{-1}[/mm]  o [mm]g_3[/mm] ) = [mm]g_1^{-1}[/mm] o [mm]g_3 \in[/mm]
> H, das sich [mm]g_2[/mm] o [mm]g_2^{-1}[/mm] weghebt?
>  und bei einer untergruppe die verknüpfung zweier Elemente
> wieder in der Untergruppe liegt?

Genau!

> und zur Symmetrie:
>  [mm](g_1^{-1}[/mm]  o  [mm]g_2)^{-1}[/mm] = [mm]g_2^{-1}[/mm]  o [mm](g_1^{-1})^{-1}[/mm] =
> [mm]g_2^{-1}[/mm]  o [mm]g_1 \in[/mm] H, da das Inverselement auch wieder in
> der Untergruppe sein muss?

Exakt!

LG Felix


Bezug
                                                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 06.05.2006
Autor: Riley

okay, danke dir vielmals!!

hast du vielleicht zu teil b) auch noch einen tipp für mich *hoff* ?

hab mir grad überlegt, ob es nicht eigentlich heißen sollte
[mm] [g_1] [/mm] * [mm] [g_2] [/mm] := [mm] [g_1^{-1} [/mm] o [mm] g_2] [/mm] statt [mm] [g_1 [/mm] o [mm] g_2] [/mm] ?

weiß nur leider gar nicht wie man da am besten anfängt ... *grübel*

Bezug
                                                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 06.05.2006
Autor: felixf

Hallo Riley!

> okay, danke dir vielmals!!
>  
> hast du vielleicht zu teil b) auch noch einen tipp für mich
> *hoff* ?
>  
> hab mir grad überlegt, ob es nicht eigentlich heißen
> sollte
>  [mm][g_1][/mm] * [mm][g_2][/mm] := [mm][g_1^{-1}[/mm] o [mm]g_2][/mm] statt [mm][g_1[/mm] o [mm]g_2][/mm] ?

Nein, das soll es nicht heissen. So wie es da im ersten Posting steht ist es schon richtig.

Schau dir doch mal $[h] [mm] \ast [/mm] [g] = [h g]$ an. Da $[h]$ das neutrale Element in $G/R$ ist (da $h [mm] \in [/mm] H$) ist $[h] [mm] \ast [/mm] [g]$ ja gleich $[g]$, also ist $[g] = [h g]$. Und was bedeutet das nun?

LG Felix


Bezug
                                                                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Sa 06.05.2006
Autor: Riley

hi felix!
tausend dank für deine hilfe...   wenn [g]=[hg] , darf ich dann schreiben:
[mm] g^{-1} [/mm] o h o g = [mm] g^{-1} [/mm] o g [mm] \in [/mm] H ??

gruß riley

Bezug
                                                                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 06.05.2006
Autor: felixf

Hallo Riley!

>  tausend dank für deine hilfe...   wenn [g]=[hg] , darf ich
> dann schreiben:
>  [mm]g^{-1}[/mm] o h o g = [mm]g^{-1}[/mm] o g [mm]\in[/mm] H ??

Wieso sollte das Gleichheitszeichen gelten?! Das gilt nur dann, wenn $h$ das neutrale Element in $G$ ist.

Wenn $[g] = [h g]$ ist, dann ist $g [mm] \sim [/mm] h g$. Und das heisst...?

LG Felix


Bezug
                                                                                
Bezug
Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 06.05.2006
Autor: Riley

hi felix!
achso... ich glaub jetzt hab ichs:
g~ hg bedeutet (g, h g) [mm] \in [/mm] R  [mm] \gdw g^{-1} [/mm] o ( h g) [mm] \in [/mm] H
also [mm] g^{-1} [/mm] h g [mm] \in [/mm] H ????

dankeschön
gruß  riley :)

Bezug
                                                                                        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Sa 06.05.2006
Autor: felixf

Hallo Riley!

>  achso... ich glaub jetzt hab ichs:
>  g~ hg bedeutet (g, h g) [mm]\in[/mm] R  [mm]\gdw g^{-1}[/mm] o ( h g) [mm]\in[/mm] H
>  also [mm]g^{-1}[/mm] h g [mm]\in[/mm] H ????

Genau :-)

> dankeschön

Bitteschoen!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de