www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalenzrelation
Äquivalenzrelation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 09.11.2004
Autor: misterbecks

Habe folgende Aufgabe zu lösen (also besser gesagt: Habe die Lösung schon gesehen, aber ich möchte den Ansatz verstehen).

Sei ~ eine Äquivalenzrelation auf X. Für x [mm] \in [/mm] X heißt [mm] \overline{x}:= [/mm] {y [mm] \in [/mm] Y | x ~ y } die von x erzeugte Äquivalenzklasse.
Zeige: Für x,y [mm] \in [/mm] X sind folg. Aussagen äquivalent:

i) x ~ y
ii) [mm] \overline{x} [/mm] ~ [mm] \overline{y} [/mm]
iii) [mm] \overline{x}\cap\overline{y} \not=\emptyset [/mm]

Frage 1: Was bedeutet: [mm] \overline{x}:= [/mm] { y [mm] \in [/mm] Y | x ~ y } ?
Frage 2: Wie geht man so eine Aufgabe an?

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 09.11.2004
Autor: Micha

Hallo!
> Habe folgende Aufgabe zu lösen (also besser gesagt: Habe
> die Lösung schon gesehen, aber ich möchte den Ansatz
> verstehen).
>  
> Sei ~ eine Äquivalenzrelation auf X. Für x [mm]\in[/mm] X heißt
> [mm]\overline{x}:=\{y \in Y | x \sim y \}[/mm] die von x erzeugte
> Äquivalenzklasse.
> Zeige: Für x,y [mm]\in[/mm] X sind folg. Aussagen äquivalent:
>  
> i) x ~ y
>  ii) [mm]\overline{x}\sim \overline{y} [/mm]
>  iii) [mm]\overline{x}\cap\overline{y} \not=\emptyset [/mm]
>  
> Frage 1: Was bedeutet: [mm]\overline{x}:=\{ y \in Y | x \sim y \}[/mm]
> ?
>  Frage 2: Wie geht man so eine Aufgabe an?
>  

Zu Frage 1:
[mm]\overline{x}:= \{ y \in Y | x \sim y \} [/mm] bedeutet schlicht, dass das die Menge aller y aus Y ist, die mit x in der gegebenen Relation stehen. Das ist also nicht ein Element, sondern eine ganze Menge von Elementen.

Ein kleiner Hinweis für die Beweise: Weil ~ eine Äquivalenzrelation ist, gilt natürlich auch die Symmetrie, also wenn x~y, dann auch y~x.
Dann folgt für deine Äquivalenzklasse:
[mm]\overline{x}:= \{ y \in Y | x \sim y \} [/mm]  und
[mm]\overline{y}:= \{ x \in X | y \sim x \} [/mm].
Und das ist wegen der Symmetrie gleich, weil jedes Element aus [mm]\overline{x}[/mm] auch Element aus [mm]\overline{y} ist[/mm] (hier spielt auch die Transitivität der Äquivalenzrelation eine Rolle).

Zu Frage 2:
Ich würde bei soetwas mit einem Ringschluss arbeiten. Das heißt ich zeige:
aus i) folgt ii)
aus ii) folgt iii)
aus iii) folgt i).
Ich hoffe du weist wie man das macht. Du musst dabei so vorgehen, dass du alles das, aus dem gefolgert wird als gegeben angenommen wird. Dann musst du das umformen und auf die Folgerung schließen.

Ich hoffe das hilft dir erstmal,

Gruß Micha ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de