www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Äquivalenzrelation?
Äquivalenzrelation? < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation?: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 03.12.2009
Autor: capablanca

Aufgabe
Auf der Menge N der natürlichen Zahlen (ohne die Null) sei die folgende Relation definiert:
R = { (x, [mm] y)\in\ [/mm] N * N | x*y ist Quadratzahl }
Ist R eine Äquivalenzrelation?

Hallo, ist die folgende Überlegung richtig?

1)Die Relation ist Reflexiv weil die Vorraussetzung für Reflexivität x<=x gilt und wen [mm] x*x=z^2 [/mm] ist dann muss ja x=x sein(eine quadratzahl muss auf jeden Fall ein element von sich selbst enthalten), oder ist das komplet falsch und man sollte das anders beweisen?

2)Symmetrisch ist die Funktion weil [mm] (x*y=z^2 [/mm] und [mm] y*x=z^2 [/mm] ) ist also Aus (x, y) ∈ R folgt, dass auch (y, x) ∈ R gilt..

3) Transitiv sind die Relationen "≤" in einer Menge reeller Zahlen, denn aus x ≤ y und y ≤ z folgt x ≤ z; aber wie ich die Aufgabe auf transivität überprüfe weiss ich nicht?


danke im vorraus

gruß Alex


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelation?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Do 03.12.2009
Autor: leduart

Hallo
du musst zeigen: aus [mm] x*y=m^2 [/mm] und [mm] y*z=n^2 [/mm] folgt [mm] x*z=k^2 [/mm]
am besten du unterteilst: a, x,y,z selbst Quadratzahlen dann ist es trivial.
sonst musst du dir überlegen warum am besten erstmal an nem Beispiel, dann allgemein:
72*2 ist QZ  2*18 ist Qz   ; 75*3 und 3*48 usw.
Gruss leduart

Bezug
                
Bezug
Äquivalenzrelation?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 03.12.2009
Autor: capablanca

danke für die Antwort. Ist das Vorgehen richtig:?
[mm] x*y=m^2 [/mm]
[mm] y*z=n^2 [/mm]
[mm] x*z=k^2 [/mm]
[mm] x*y*y*z=m^2*n^2 [/mm] daraus folgt
[mm] x*z=\bruch{m^2*n^2}{y^2} [/mm] daraus folgt
[mm] k^2=\bruch{m^2*n^2}{y^2} [/mm]

ist damit die transivität bewiesen, oder muss ich das anders aufschreiben?

Gruß Alex


Bezug
                        
Bezug
Äquivalenzrelation?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Do 03.12.2009
Autor: leduart

Hallo
woher weiss man dass $ [mm] k^2=\bruch{m^2\cdot{}n^2}{y^2} [/mm] $ ne ganze zahl ist? das hast du nicht gezeigt.
Gruss leduart


Bezug
                                
Bezug
Äquivalenzrelation?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Do 03.12.2009
Autor: capablanca


Ok, also wenn [mm] x*z=\bruch{m^2\cdot{}n^2}{y^2} [/mm] >=0 ist dann muss [mm] k^2 [/mm] auch >=0 sein und somit eine Natürliche Zahl ist das richtig?

Bezug
                                        
Bezug
Äquivalenzrelation?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Do 03.12.2009
Autor: leduart

Hallo
Da x*z ganz ist, ist das ne ganze Zahl, ich hatte das falsch geschrieben. Aber es soll ja ne Quadratzahl sein also muss m*n/y ne ganze Zahl sein.
Gruss leduart

Bezug
                                                
Bezug
Äquivalenzrelation?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:02 Do 03.12.2009
Autor: capablanca

Aufgabe
Aufgabe
Auf der Menge N der natürlichen Zahlen (ohne die Null) sei die folgende Relation definiert:
R = { (x, [mm] y)\in\ [/mm] N * N | x*y ist Quadratzahl }
Ist R eine Äquivalenzrelation?

Ok danke, also ist es bewiesen, dass die Relation transitiv ist, sind auch folgende Überlegungen von mir als Beweis ausreichend?



1)Die Relation ist Reflexiv weil die Vorraussetzung für Reflexivität x<=x gilt und wen $ [mm] x\cdot{}x=z^2 [/mm] $ ist dann muss ja x=x sein(eine quadratzahl muss auf jeden Fall ein element von sich selbst enthalten), oder ist das komplet falsch und man sollte das anders beweisen?

2)Symmetrisch ist die Funktion weil $ [mm] (x\cdot{}y=z^2 [/mm] $ und $ [mm] y\cdot{}x=z^2 [/mm] $ ) ist also Aus (x, y) ∈ R folgt, dass auch (y, x) ∈ R gilt

Bezug
                                                        
Bezug
Äquivalenzrelation?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 05.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de