www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Äquivalenzrelation
Äquivalenzrelation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Zusatzaufgabe
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 23.01.2012
Autor: userxyz123

Aufgabe
Sei A eine Menge.
Sei R eine nichtleere Menge von Äquivalenzrelationen auf A. Zeigen sie, dass [mm] $\cap [/mm] R$ eine Äquivalenzrelation auf A ist.




Wie geht man mit einer Relation auf eine Menge um?

Für eine Äquivalenzrelation gilt zu zeigen,
dass sie reflexiv, symmetrisch und transitiv ist.
Für eine Relation zb. Y [mm] \subset [/mm] MxM heißt das ja:
reflexic,falls für alle x [mm] \in [/mm] M gilt xYx
symmetrisch,falls für alle x,y [mm] \in [/mm] M aus xYy folgt yRx
transitiv, falls für alle x,y,z [mm] \in [/mm] M aus xYy und yRz folgt xRz.

Und was genau bedeutet R ist eine nichtleere MENGE von Äquivalenzrelationen?

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Di 24.01.2012
Autor: Leopold_Gast

Eine Äquivalenzrelation auf [mm]A[/mm] kann als Teilmenge des kartesischen Produktes [mm]A \times A[/mm] aufgefaßt werden mit den charakteristischen Eigenschaften Reflexivität, Symmetrie, Transitivität. Wenn also jetzt eine nichtleere Menge von Äquivalenzrelationen gegeben ist, dann heißt das, daß viele solcher Teilmengen von [mm]A \times A[/mm] vorliegen. Und diese Teilmengen werden alle miteinander geschnitten. Und jetzt sollst du zeigen, daß für den Schnitt wieder die Eigenschaften Reflexivität, Symmetrie, Transitivität erfüllt sind. Eigentlich ist das nur ein banales Spiel mit dem Allquantor.

Könnte es sein, daß das "R" irgendwie kunstvoll verschlungen ist, z.B. [mm]\mathcal{R}[/mm] oder [mm]\mathfrak{R}[/mm]? Denn wenn man den Buchstaben [mm]R[/mm] für eine Äquivalenzrelation selbst wählt, sollte man eine Menge solcher Äquivalenzrelationen mit einem "komplizierteren" Buchstaben bezeichnen.

Bezug
                
Bezug
Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 24.01.2012
Autor: userxyz123

Das ist natürlich richtig, es ist ein [mm] \mathcal{R}, [/mm] es war leider nur zu kompliziert für mich diesen Buchstaben zufinden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de