www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Äquivalenzrelation Funktion
Äquivalenzrelation Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:01 Fr 07.01.2011
Autor: ella87

Aufgabe
Sei  ~  eine Äquivalenzrelation auf [mm] \IN \times \IN [/mm] definiert durch:
[mm]\forall ( n_1 , m_1 ) , ( n_2 , m_2 ) \in \IN \times \IN[/mm] : [mm] ( n_1 , m_1 ) \sim ( n_2 , m_2 ) \gdw n_1 + m_2 = n_2 + m_1 [/mm].
Sei [mm] \IZ = ( \IN \times \IN ) / \sim [/mm].

Sei
[mm] \alpha_{\IZ} : \IZ \times \IZ \to \IZ[/mm] , [mm] ( [ n_1 , m_1 ]_\sim ,[ n_2 , m_2 ]_\sim ) \mapsto [ n_1 + n_2 , m_1 + m_2 ]_\sim [/mm]

und
[mm] \mu_{\IZ}: \IZ \times \IZ \to \IZ[/mm] , [mm] ( [ n_1 , m_1 ]_\sim ,[ n_2 , m_2 ]_\sim ) \mapsto [ n_1 n_2 + m_1 m_2 , n_1 m_2 + m_1 n_2 ]_\sim [/mm].

Zeigen Sie, dass die Abbildungen [mm] \alpha_{\IZ}[/mm] und [mm] \mu_{\IZ}[/mm] wohldefiniert sind, d.h. dass die Addition und die Multiplikation an den ganzen Zahlen wohldefiniert sind.

Hier komm ich leider garnicht klar.

irgendwie zu viele [mm] \times [/mm] und [mm] \sim [/mm].

Kann das sein, dass ich z.B. bei [mm] \alpha_{\IZ}[/mm] zeigen muss, dass

[mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim ) [/mm]   [mm] \Rightarrow [/mm]   [mm] [ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim [/mm]  ???????

Das wäre meine analoge Übertragung einer anderen Aufgabe.
Stimmt das?

        
Bezug
Äquivalenzrelation Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Fr 07.01.2011
Autor: Dirichlet

ella, ja das stimmt!

Hochachtungsvoll, P. G. L. Dirichlet

Bezug
                
Bezug
Äquivalenzrelation Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Fr 07.01.2011
Autor: ella87

:-) und was heißt
[mm] ( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim ) [/mm] ?

Ich meine damit kann ich ja nicht einfach rumrechnen.....

Ich habs trotzdem mal gemacht, aber ich komme so jedenfalls nicht zum Ziel:

[mm] ( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim ) [/mm]

also gilt, wegen der Relation:

[mm][ x_1 , y_1 ]_\sim + [ a_2 , b_2 ]_\sim = [ a_1 , b_1 ]_\sim + [ x_2 , y_2 ]_\sim [/mm]

jetzt weiß ich nicht weiter....Kann man das irgendwie paarweise addieren?
Nein, oder?
Ich komm hier nicht weiter. Auch wenn man das addieren dürfte, dann bekäme ich das ja auch nicht so sortiert, wie ich das haben möchte.

Ich bitte nochmals um Hilfe!

Bezug
                        
Bezug
Äquivalenzrelation Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Fr 07.01.2011
Autor: Dirichlet

Ella, da haben wir uns verrannt:

> irgendwie zu viele [mm]\times[/mm] und [mm]\sim [/mm].

In der Tat, kurzzeitig auch für mich.
  

> Kann das sein, dass ich z.B. bei [mm]\alpha_{\IZ}[/mm] zeigen muss, dass
>  
> [mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim )[/mm]
>   [mm]\Rightarrow[/mm]   [mm][ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm]

Nein, man muss zeigen:  [mm](x_1 , y_1)\sim (x_2 , y_2)[/mm] und [mm](a_1 , b_1)\sim (a_2 , b_2)[/mm] [mm]\Rightarrow [ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm].

Das müsste jetzt besser klappen, oder nicht?

Hochachtungsvoll, P.G. L. Dirichlet

Bezug
                                
Bezug
Äquivalenzrelation Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Sa 08.01.2011
Autor: ella87


> Ella, da haben wir uns verrannt:
>  
> > irgendwie zu viele [mm]\times[/mm] und [mm]\sim [/mm].
>  
> In der Tat, kurzzeitig auch für mich.
>    
> > Kann das sein, dass ich z.B. bei [mm]\alpha_{\IZ}[/mm] zeigen muss,
> dass
>  >  
> > [mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim )[/mm]
> >   [mm]\Rightarrow[/mm]   [mm][ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm]

>
> Nein, man muss zeigen:  [mm](x_1 , y_1)\sim (x_2 , y_2)[/mm] und
> [mm](a_1 , b_1)\sim (a_2 , b_2)[/mm] [mm]\Rightarrow [ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm].
>  
> Das müsste jetzt besser klappen, oder nicht?


mmh. Irgendwie nicht. Ich hab da entwedern noch nen Fehler oder mir fehlt eine geniale Umformung.

[mm](x_1 , y_1)\sim (x_2 , y_2)[/mm] liefert mir [mm]x_1 + y_2 = x_2 + y_2 [/mm]
und [mm](a_1 , b_1)\sim (a_2 , b_2)[/mm] , dass [mm]a_1 + b_2 = a_2 + b_2 [/mm]        


und was ich zeigen will, also [ [mm] x_1 +x_2 [/mm] , [mm] y_1 [/mm] + [mm] y_2 ]_\sim [/mm] =  [ [mm] a_1 +a_2 [/mm] , [mm] b_1 [/mm] + [mm] b_2 ]_\sim [/mm] [/mm] lässt sich umformen (wir haben da ein Lemma:-)) zu
[mm](x_1 +x_2 , y_1 + y_2) \sim (a_1 +a_2 , b_1 + b_2 )[/mm]
also [mm] x_1 +x_2 + b_1 + b_2 = a_1 +a_2 + y_1 + y_2 [/mm]


aber dann komme ich nicht weiter.
ich kann die ersten beiden Gleichungen addieren oder subtrahieren wie ich will ich komme nicht auf das auf das ich kommen will. Die Vorzeichen stimmen nie!

Kannst du mir da nochmal weiterhelfen. Dann kann doch nicht so schwer sein!!!

Bezug
                                        
Bezug
Äquivalenzrelation Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 03:04 Sa 08.01.2011
Autor: felixf

Moin,

> > Ella, da haben wir uns verrannt:
>  >  
> > > irgendwie zu viele [mm]\times[/mm] und [mm]\sim [/mm].
>  >  
> > In der Tat, kurzzeitig auch für mich.

sowas passiert sehr leicht... Edit: ich musste mich gerade auch korrigieren ;-)

> > > Kann das sein, dass ich z.B. bei [mm]\alpha_{\IZ}[/mm] zeigen muss,
> > dass
>  >  >  
> > > [mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim )[/mm]
> > >   [mm]\Rightarrow[/mm]   [mm][ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm]

> >
> > Nein, man muss zeigen:  [mm](x_1 , y_1)\sim (x_2 , y_2)[/mm] und
> > [mm](a_1 , b_1)\sim (a_2 , b_2)[/mm] [mm]\Rightarrow [ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm].
>  
> >  

> > Das müsste jetzt besser klappen, oder nicht?
>  
>
> mmh. Irgendwie nicht. Ich hab da entwedern noch nen Fehler
> oder mir fehlt eine geniale Umformung.
>  
> [mm](x_1 , y_1)\sim (x_2 , y_2)[/mm] liefert mir [mm]x_1 + y_2 = x_2 + y_2[/mm]
>  
> und [mm](a_1 , b_1)\sim (a_2 , b_2)[/mm] , dass [mm]a_1 + b_2 = a_2 + b_2[/mm]
>        
>
>
> und was ich zeigen will, also [ [mm]x_1 +x_2[/mm] , [mm]y_1[/mm] + [mm]y_2 ]_\sim[/mm]
> =  [ [mm]a_1 +a_2[/mm] , [mm]b_1[/mm] + [mm]b_2 ]_\sim[/mm][/mm]

Da ist wieder ein Wurm drinnen. (Da hat wohl jemand einen grossen Eimer Würmer umgekippt...)

Also. Wir haben: [mm] $[x_1, y_1]_\sim [/mm] = [mm] [a_1, b_1]_\sim$ [/mm] und [mm] $[x_2, y_2]_\sim [/mm] = [mm] [a_2, b_2]_\sim$, [/mm] oder in anderen Worten: [mm] $(x_1, y_1) \sim (a_1, b_1)$ [/mm] und [mm] $(x_1, y_1) \sim (a_2, b_2)$ [/mm]

Wir wollen zeigen: [mm] $[x_1 [/mm] + [mm] x_2, y_1 [/mm] + [mm] y_2]_\sim [/mm] = [mm] [a_1 [/mm] + [mm] a_2, b_1 [/mm] + [mm] b_2]_\sim$, [/mm] oder in anderen Worten: [mm] $(x_1 [/mm] + [mm] x_2, y_1 [/mm] + [mm] y_2) \sim (a_1 [/mm] + [mm] a_2, b_1 [/mm] + [mm] b_2)$. [/mm]

Damit sollte es jetzt wirklich klappen :-)

LG Felix


Bezug
        
Bezug
Äquivalenzrelation Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:07 Sa 08.01.2011
Autor: felixf

Moin!

> Sei  ~  eine Äquivalenzrelation auf [mm]\IN \times \IN[/mm]
> definiert durch:
>  [mm]\forall ( n_1 , m_1 ) , ( n_2 , m_2 ) \in \IN \times \IN[/mm] :
> [mm]( n_1 , m_1 ) \sim ( n_2 , m_2 ) \gdw n_1 + m_2 = n_2 + m_1 [/mm].
> Sei [mm]\IZ = ( \IN \times \IN ) / \sim [/mm].
>  
> Sei
>  [mm]\alpha_{\IZ} : \IZ \times \IZ \to \IZ[/mm] , [mm]( [ n_1 , m_1 ]_\sim ,[ n_2 , m_2 ]_\sim ) \mapsto [ n_1 + n_2 , m_1 + m_2 ]_\sim[/mm]
>  
> und
>  [mm]\mu_{\IZ}: \IZ \times \IZ \to \IZ[/mm] , [mm]( [ n_1 , m_1 ]_\sim ,[ n_2 , m_2 ]_\sim ) \mapsto [ n_1 n_2 + m_1 m_2 , n_1 m_2 + m_1 n_2 ]_\sim [/mm].
>  
> Zeigen Sie, dass die Abbildungen [mm]\alpha_{\IZ}[/mm] und [mm]\mu_{\IZ}[/mm]
> wohldefiniert sind, d.h. dass die Addition und die
> Multiplikation an den ganzen Zahlen wohldefiniert sind.
>  Hier komm ich leider garnicht klar.
>  
> irgendwie zu viele [mm]\times[/mm] und [mm]\sim [/mm].
>  
> Kann das sein, dass ich z.B. bei [mm]\alpha_{\IZ}[/mm] zeigen muss,
> dass
>  
> [mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) \sim ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim )[/mm]
>   [mm]\Rightarrow[/mm]   [mm][ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm]
>  ???????

Das war schon fast richtig: wenn du ein [mm] $\sim$ [/mm] durch = ersetzt, stimmt es:

> [mm]( [x_1 , y_1 ]_\sim , [x_2 , y_2 ]_\sim ) = ( [a_1 , b_1 ]_\sim , [a_2 , b_2 ]_\sim )[/mm]
>   [mm]\Rightarrow[/mm]   [mm][ x_1 +x_2 , y_1 + y_2 ]_\sim = [ a_1 +a_2 , b_1 + b_2 ]_\sim[/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de