www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - affin linear
affin linear < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affin linear: Augabe/Beweis
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 20.01.2007
Autor: sonnenfee23

Aufgabe
Zeigen Sie:
Eine Funktion f: [mm] \IR^{n} \to \IR [/mm] ist affin-linear [mm] \gdw [/mm] f die Darstellung f(x) = [mm] c^{T}*x [/mm] +a mit c [mm] \in \IR^{n} [/mm] und a [mm] \in \IR [/mm] hat

Hallo!

Ich soll diese Aufgabe mit den Definitionen der linearen Optimierung lösen  und weiß nicht wie ich da vorgehen soll, dies ist zur Klausurvorbereitung,... Bitte um Hilfe, da ich grad nicht viel verstehe,...

MfG Susi

Danke schonmal im Voraus!

        
Bezug
affin linear: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 So 21.01.2007
Autor: felixf

Hallo Susi!

> Zeigen Sie:
> Eine Funktion f: [mm]\IR^{n} \to \IR[/mm] ist affin-linear [mm]\gdw[/mm] f
> die Darstellung f(x) = [mm]c^{T}*x[/mm] +a mit c [mm]\in \IR^{n}[/mm] und a
> [mm]\in \IR[/mm] hat
>  Hallo!
>  
> Ich soll diese Aufgabe mit den Definitionen der linearen
> Optimierung lösen  und weiß nicht wie ich da vorgehen soll,
> dies ist zur Klausurvorbereitung,... Bitte um Hilfe, da ich
> grad nicht viel verstehe,...

Schreib doch mal hierhin, wie bei euch definiert ist, dass eine Funktion affin-linear ist.

LG Felix


Bezug
                
Bezug
affin linear: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 21.01.2007
Autor: sonnenfee23

Aufgabe
Affin linear bedeutet laut unserer Vorlesung:

f ist affin linear, wenn f konvex und konkav ist.

Hallo!
Definition von konvex aus der Vorlesung:
Eine Funktion f : S [mm] \to [/mm] [- [mm] \infty, \infty] [/mm] heißt konvex, falls ihr Epigraph eine konvexe Menge in [mm] \IR^n \times \IR [/mm] ist.

Definition konkav:

f heißt konkav, wenn -f konvex ist.

Bezug
                        
Bezug
affin linear: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mo 22.01.2007
Autor: hammel123

Also an sich könnte man ja eine rein geometrische interpretation vorschlagen. Die affin lineare Funktion lässt sich ja z.b. im [mm] R^2 [/mm] als gerade auffassen. Das wiederum heisst,dass der epigraph auf jeden fall konvex ist und am Beispiel der Gerade sieht man auch sofort, dass -f konvex ist.
Ich weiss nicht sehr mathematisch, aber vielleicht hilfts weiter :)
Grüße,
A

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de