www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - algebraisch Inneres vs Inneres
algebraisch Inneres vs Inneres < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

algebraisch Inneres vs Inneres: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 16.01.2009
Autor: adi87

Hallo ihr Lieben,
könnte mir mal jemand ein Beispiel für eine (nichtkonvexe) Menge geben, wo das Innere nicht gleich dem algebraischen Inneren ist.
Wir hatten zwar ein Beispiel in der Vorlesung, aber ich habe mir dazu nur ein Bildchen aufgemalt, und wirre Notizen dazugeschrieben. Das hilft mir gerade nicht wirklich weiter.
Wenn also jemand etwas weiß, würde es mir sehr viel weiterbringen.
Liebe Grüße
adi87

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
algebraisch Inneres vs Inneres: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 16.01.2009
Autor: SEcki


>  könnte mir mal jemand ein Beispiel für eine (nichtkonvexe)
> Menge geben, wo das Innere nicht gleich dem algebraischen
> Inneren ist.

Ich musste erst nachschauen, was denn zweiteres heißt. Also x ist im algebraisch Inneren von M, wenn für alle y eine a existiert mit [m]x+a*y\in M [/m], richtig? Hast du dir selbst schon versucht eines zu basteln?

>  Wir hatten zwar ein Beispiel in der Vorlesung, aber ich
> habe mir dazu nur ein Bildchen aufgemalt, und wirre Notizen
> dazugeschrieben. Das hilft mir gerade nicht wirklich
> weiter.

Was hast du denn aufgeschrieben? Vielleicht kannst du ja eines rekonstruieren! Wenn das nicht hilft, betrachte mal [m]M=\IQ [/m] in  [m]\IR[/m] (hab ich aus dem FA-Buch, in dem ich die Def. gefunden habe.).

SEcki

Bezug
                
Bezug
algebraisch Inneres vs Inneres: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Fr 16.01.2009
Autor: adi87

Also wir hatten die Definition auch so.
Wenn ich mir jetzt dein Beispiel überlege, dann müsste doch gelten:

aint [mm] (\IQ)=\IQ [/mm] weil für alle y [mm] \in \IR [/mm] kann ich doch insbesondere a als 1/y wählen und bin danach wieder in [mm] \IQ [/mm]
- oder??

Andererseits, das Innere hatten wir wie folgt definiert: x heißt innerer Punkt, wenn es eine absolutkonvexe Nullumgebung V in [mm] \IR [/mm] gibt so, dass x+V in [mm] \IQ [/mm] liegt.
Aber ich kann niemals so eine absolutkonvexe Nullumgebung finden. Denn: selbst wenn ich nur rationale Punkte um die 0 wählen würde, dann wäre eine Konvexkombination mit einem [mm] \lambda \in \IR \backslash \IQ [/mm] nicht mehr drin (die ja erlaubt ist, solange 0 [mm] \le \lambda \le [/mm] 1 ). Also kann ich nichtmal ne konvexe Nullumgebung finden.

Seh ich das richtig??? Damit hätte ich doch [mm] int(\IQ) [/mm] = [mm] \emptyset [/mm]

Bezug
                        
Bezug
algebraisch Inneres vs Inneres: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 16.01.2009
Autor: SEcki


> aint [mm](\IQ)=\IQ[/mm] weil für alle y [mm]\in \IR[/mm] kann ich doch
> insbesondere a als 1/y wählen und bin danach wieder in [mm]\IQ[/mm]
>  - oder??

Ja.

> Seh ich das richtig??? Damit hätte ich doch [mm]int(\IQ)[/mm] =
> [mm]\emptyset[/mm]  

Ja.

Und jetzt finde als Übung (ein) andere(s) Gegenbeispiel(e).

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de