www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - algebraische Zahlen
algebraische Zahlen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

algebraische Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:26 Mi 09.05.2012
Autor: pestaiia

Aufgabe
Zeigen Sie, dass (1+5^(1/2))/2 eine algebraische Zahl ist.

Hallo,
also nach meinen Überlegungen ist die genannte Zahl algebraisch, wenn sie sich als Nullstelle eines Polynoms darstellen lässt. Wobei die Koeffizienten im Polynom doch ganzzahlig sein müssen oder?
Und das klappt hier doch nicht oder?
Mein gefundenes Polynom: 2x-1-5^(1/2)
Danke schon mal für evtl Hilfen!

        
Bezug
algebraische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mi 09.05.2012
Autor: reverend

Hallo pestaia,

kommt Dir die Zahl nicht bekannt vor?

> Zeigen Sie, dass (1+5^(1/2))/2 eine algebraische Zahl ist.
>  Hallo,
>  also nach meinen Überlegungen ist die genannte Zahl
> algebraisch, wenn sie sich als Nullstelle eines Polynoms
> darstellen lässt. Wobei die Koeffizienten im Polynom doch
> ganzzahlig sein müssen oder?

Wenn Du eins mit rationalen Koeffizienten findest, ist es auch gut. Das kann man ja leicht in eins mit ganzzahligen K. überführen.

>  Und das klappt hier doch nicht oder?

Doch.

>  Mein gefundenes Polynom: 2x-1-5^(1/2)

Das hat eben einen Koeffizienten, der weder ganzzahlig noch rational ist. Auf diesem Weg könntest Du ja für jede Zahl zeigen, dass sie algebraisch ist.
Da in der Zahl eine Wurzel vorkommt, würde ichs direkt mit einem Polynom zweiten Grades versuchen, also [mm] f(x)=x^2+ax+b [/mm]

Das hat bekanntlich Lösungen [mm] x_{1/2}=-\bruch{a}{2}\pm\wurzel{\bruch{a^2}{4}-b} [/mm]

Wenn Du Dir jetzt Deine Zahl anschaust, sieht die doch genau so aus. Man kann schonmal direkt a=-1 setzen und muss nur noch b so finden, dass [mm] a^2-4b=5 [/mm] ist.

>  Danke schon mal für evtl Hilfen!

Übrigens heißt die Zahl [mm] \Phi [/mm] und bezeichnet den goldenen Schnitt, die größere der beiden Lösungen der Gleichung [mm] x=1+\bruch{1}{x} [/mm]

Grüße
reverend


Bezug
                
Bezug
algebraische Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mi 09.05.2012
Autor: pestaiia

Danke reverend,
hab das mal nachgerechnet und du hast recht:-). Eine der Lösungen des Polynoms [mm] x^2-x-1 [/mm] ist tatsächlich (1+5^(1/2))/2
War eigentlich gar nicht schwer;-).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de