www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - alternierende Normalform
alternierende Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

alternierende Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:44 Di 27.05.2008
Autor: SusanneK

Aufgabe
Sei [mm]A=\pmat{0&0&2&1&1\\0&0&2&-1&-1\\-2&-2&0&1&-1\\-1&1&-1&0&1\\-1&1&1&-1&0} \in M_{55}(\IR) [/mm]. Berechnen Sie eine invertierbare Matrix P, so dass [mm] P^TAP [/mm] eine alternierende Normalform ist.

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ich weiss grundsätzlich, was ich tun muss:
Ich wähle zuerst [mm] v_1=\vektor{1\\0\\0\\0\\0}, v_2=\vektor{0\\0\\0\\0\\1} [/mm], weil ich mit diesen beiden Vektoren [mm] v_1^TAv_2=1, v_2^TAv_1=-1 [/mm] erhalte.
Dann sei [mm] W_1=\{v \in \IR^5 | \beta(v_1,v) = \beta(v_2,v) = 0\} [/mm] und daraus kann ich dann ein LGS aufstellen, um noch 3 weitere v zu finden, die eine Basis von [mm] W_1 [/mm] bilden.
Hier in dieser Aufgabe ist das dann [mm] \vektor{-1\\-1\\0\\0\\0}, \vektor{3\\0\\1\\-2\\0}, \vektor{1\\0\\1\\0\\-2} [/mm]
Dann muss ich aus diesen 3 Vektoren wieder 2 auswählen, für die gilt [mm] v_1^TAv_2=1, v_2^TAv_1=-1 [/mm]. Ich finde aber keine.
Gibt es hierfür einen Trick, oder habe ich das ganze Verfahren noch nicht richtig verstanden ?

Danke, Susanne.

        
Bezug
alternierende Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Di 27.05.2008
Autor: angela.h.b.


> Sei
> [mm]A=\pmat{0&0&2&1&1\\0&0&2&-1&-1\\-2&-2&0&1&-1\\-1&1&-1&0&1\\-1&1&1&-1&0} \in M_{55}(\IR) [/mm].
> Berechnen Sie eine invertierbare Matrix P, so dass [mm]P^TAP[/mm]
> eine alternierende Normalform ist.

>  ich weiss grundsätzlich, was ich tun muss:

Hallo,

ich nicht.

Ist das Ziel, diese alternierende Normalform, diese Matrix:

[mm] \pmat{0&0&0&0&1\\0&0&0&1&0\\0&0&0&0&0\\0&-1&0&0&0\\-1&0&0&0&0} [/mm]  ?

Gruß v. Angela



Bezug
                
Bezug
alternierende Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Di 27.05.2008
Autor: SusanneK

Hallo Angela,
die alternierende Normalform, besteht (bei uns ?) aus 2x2 Blöcken, die so aufgebaut sind:
[mm] \pmat{0&1\\-1&0} [/mm]
Der Rest wir mit 0 aufgefüllt.
In dieser Aufgabe ist die alternierende Normalform also:
[mm]\pmat{0&1&0&0&0\\-1&0&0&0&0\\0&0&0&1&0\\0&0&-1&0&0\\0&0&0&0&0}[/mm]

LG, Susanne.


Bezug
                        
Bezug
alternierende Normalform: Lösungsweg
Status: (Frage) überfällig Status 
Datum: 12:08 Sa 31.05.2008
Autor: opafabian

Hallo Susanne,
könntest Du mir nochmal grob den Lösungsweg erklären? Ich habe gerade die gleiche Aufgabe, mir fehlen aber auch die Tricks :-) Hier oder per mail an phirlephanz (at) gmx (punkt) de

Bezug
                                
Bezug
alternierende Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mo 02.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
alternierende Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Do 29.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de