alternierende Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm] a_{n}=(-1)^{n+1}*1/4*2^{n-1}
[/mm]
Berechne [mm] S_{15} [/mm] |
Hier habe ich etwas Schwierigkeiten. Um den Grenzwert einer alternierenden Folge zu berechnen istmir das Vorgehen klar, aber hier ist es ja einfach die Summe bis zu einem bestimmten Folgeglied..
Und da sie alternierend ist, kann ich die Formel auch nicht einfach anwenden, oder?
Muss ich 2 verschiedene Folgen aufstellen und die dann subtrahieren?
Eine nur mit positiven eine mit den negativen?
Wäre sehr froh um Tipps.
Danke!!
|
|
|
|
Hallo Ersti!
Lautet Deine Folge: [mm] $a_n [/mm] \ = \ [mm] (-1)^{n+1}*\bruch{1}{4}*2^{n-1}$ [/mm] ??
Wende dann die Potenzgesetze an:
[mm] $a_n [/mm] \ = \ [mm] (-1)^{n+1}*\bruch{1}{4}*2^{n-1} [/mm] \ = \ [mm] (-1)^{n-1}*(-1)^2*\bruch{1}{4}*2^{n-1} [/mm] \ = \ [mm] (-1)^{2}*\bruch{1}{4}*[(-1)*2]^{n-1} [/mm] \ = \ [mm] (+1)*\bruch{1}{4}*(-2)^{n-1} [/mm] \ = \ [mm] \bruch{1}{4}*(-2)^{n-1}$
[/mm]
Damit hast Du nun eine geometrische Folge mit [mm] $a_1 [/mm] \ = \ [mm] \bruch{1}{4}$ [/mm] und $q \ = \ -2$ und kannst die entsprechende Summenformel verwenden.
Gruß vom
Roadrunner
|
|
|
|