www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - analytische funktion
analytische funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

analytische funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 04.06.2008
Autor: verkackt

Aufgabe
Sei O [mm] \subset \IR^2 [/mm] offen.Für eine reelll analytische Funktion u:O [mm] \to \IR [/mm] definieren wir
[mm] v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i}) [/mm]
1.Zeigen Sie formal, dass gilt: [mm] \Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z}) [/mm]
2.Wir betrachten nun z und [mm] \overline{z} [/mm] als unabhängige (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] schreiben lässt als  [mm] v(z,\overline{z})=f(z)+g(\overline{z}) [/mm]
3.Wie sieht dann die formale Lösung aus von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] ?

Hallo,
ich komme leider mit den zweiten und dritten Teil der Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber bei 2 und 3  versteh ich die Aufgabe gar nicht.
Bei der 2 hab ich schon [mm] v(z,\overline{z}) [/mm] mit [mm] u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i}) [/mm] ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm ich leider  nicht. Und bei der 3 glaub ich , fehlt mir denselben Ansatz wie bei der 2.Also  solange ich den 2.Teil nicht verstehe kann ich nichts mit 3 anfangen.
Es wäre super nett, wenn einer mir einen Tipp geben könnte.
Lg.V.

        
Bezug
analytische funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mi 04.06.2008
Autor: verkackt

Ich sehe solche Aufgaben sind gar nicht beliebt.Aber ich brauch dringend eine Hilfe.


Bezug
        
Bezug
analytische funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Do 05.06.2008
Autor: felixf

Hallo

> Sei O [mm]\subset \IR^2[/mm] offen.Für eine reelll analytische
> Funktion u:O [mm]\to \IR[/mm] definieren wir
> [mm]v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i})[/mm]
>  
> 1.Zeigen Sie formal, dass gilt: [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm]
>  
> 2.Wir betrachten nun z und [mm]\overline{z}[/mm] als unabhängige
> (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung
> von [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> schreiben lässt als  
> [mm]v(z,\overline{z})=f(z)+g(\overline{z})[/mm]
>  3.Wie sieht dann die formale Lösung aus von
> [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> ?
>
>  Hallo,
> ich komme leider mit den zweiten und dritten Teil der
> Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber
> bei 2 und 3  versteh ich die Aufgabe gar nicht.
>  Bei der 2 hab ich schon [mm]v(z,\overline{z})[/mm] mit
> [mm]u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i})[/mm]
> ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm
> ich leider  nicht.

Versuch's doch so: setze $f(z) = v(z, [mm] \overline{z}_0)$ [/mm] fuer ein festes [mm] $\overline{z}_0$. [/mm] Damit du jetzt [mm] $g(\overline{z}) [/mm] = v(z, [mm] \overline{z}) [/mm] - f(z)$ setzen kannst, muss $v(z, [mm] \overline{z}) [/mm] - f(z) = v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0)$ [/mm] unabhaengig von $z$ sein, sprich [mm] $\frac{d}{d z} [/mm] (v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0))$ [/mm] muss gleich 0 sein.

Hier kannst du jetzt mal $v(z, [mm] \overline{z}) [/mm] = [mm] u(\tfrac{z + \overline{z}}{2}, \tfrac{z - \overline{z}}{2})$ [/mm] einsetzen und gucken ob du das beweisen kannst.

> Und bei der 3 glaub ich , fehlt mir
> denselben Ansatz wie bei der 2.Also  solange ich den 2.Teil
> nicht verstehe kann ich nichts mit 3 anfangen.

Nein, den brauchst du hier nicht, 3 ist viel einfacher.

Wenn [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0$ [/mm] gilt, muss nach 2. ja [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})$ [/mm] von der Form $f(z) + [mm] g(\overline{z})$ [/mm] sein.

Und dann weisst du nach 1., dass [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm] gilt; also bekommst du die Gleichung $f(z) + [mm] g(\overline{z}) [/mm] = [mm] \frac{1}{4} \Delta [/mm] u(x, y)$.

Kannst damit was anfangen?

LG Felix


Bezug
                
Bezug
analytische funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Do 05.06.2008
Autor: verkackt

Ja, danke dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de