www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - angeordneter Körper
angeordneter Körper < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

angeordneter Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 31.10.2005
Autor: nicole12

Hallo!
Hab da ne Aufgabe mit der ich nix anfangen kann.

Seien a, b, c, d Elemente eines angeordneten Körpers.Beweisen sie die Ungleichungen:

a)  [mm] a^{2}+b^{2} \ge [/mm] 2ab

b) [mm] a^{2}+b^{2}+c^{2}\ge [/mm] ab+bc+ca

c)  [mm] a^{4}+b^{4}+c^{4}+d^{4}\ge [/mm] 4abcd

Weiß bei allen drei Aufgaben nicht wie ich das machen muss und wie ich das korrekt aufschreibe.
Wär um eine Hilfe sehr dankbar.Viele liebe Grüße und schonmal im Vorraus ein ganz liebes Dankeschön an die, die versuchen mir zu helfen.Nicole

        
Bezug
angeordneter Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 31.10.2005
Autor: Hanno

Hallo Nicole!

a)  $ [mm] a^{2}+b^{2} \ge [/mm] $ 2ab

Das ist äquivalent zu [mm] $(a-b)^2\geq [/mm] 0$, was man leicht aus den Ordnungsaxiomen ableiten kann [mm] ($x^2\geq [/mm] 0$ für alle [mm] $x\in \IK)$. [/mm]

b) $ [mm] a^{2}+b^{2}+c^{2}\ge [/mm] $ ab+bc+ca

Nach (a) gilt [mm] $a^2+b^2\geq 2ab,b^2+c^2\geq [/mm] 2bc, [mm] c^2+a^2\geq [/mm] 2ac$. Addiere die drei Ungleichungen, dann steht die zu beweisen Ungleichung schon da.

c)  $ [mm] a^{4}+b^{4}+c^{4}+d^{4}\ge [/mm] $ 4abcd

Nach (a) gilt [mm] $a^4+b^4\geq 2a^2+b^2$, [/mm] analoges für die Paare $(b,c),(c,d)$ und $(d,a)$. Addierst du diese vier Ungleichungen, erhältst du [mm] $a^4+b^4+c^4+d^4\geq (ab)^2+(bc)^2+(cd)^2+(da)^2$. [/mm] Nun wenden wir nochmals (a) an: es ist [mm] $(ab)^2+(cd)^2\geq [/mm] 2abcd$, ebenso [mm] $(bc)^2+(dc)^2\geq [/mm] 2abcd$. Also erhalten wir zusammen [mm] $a^4+b^4+c^4+d^4\geq (ab)^2+(bc)^2+(cd)^2+(da)^2\geq [/mm] 2abcd+2abcd=4abcd$, was zu zeigen war.


Liebe Grüße,
Hanno

Bezug
                
Bezug
angeordneter Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mo 31.10.2005
Autor: nicole12

wollt mich bedanken für die schnelle, übersichtliche und super nachvollziehbare Antwort bedanken!!!!Hab das jetzt voll kapiert.Gruß Nicole

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de