www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - anwendungsbezogene Int.-Rechn.
anwendungsbezogene Int.-Rechn. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anwendungsbezogene Int.-Rechn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 So 30.10.2005
Autor: BLUBB

Wir haben eine Aufgabe mit folgender Fragestellung:
Aus dem 16mm dicken Plexiglas wird eine Bikonvexlinse ausgeschnitten. Ihre beiden Brechnungsflächen sollen ein parabelförmiges Profil sowie die in der Zeichnung angegebenen Maße besitzen. Bestimme die Funksgleichung der beiden Begrenzungsflächen!


[Dateianhang nicht öffentlich]


Wir haben uns übrelegt, dass man doch mit Hilfe der Nullstellen, die ja angegeben sind, eine Funktionsgleichung aufstellen könnte:

f(x)=(x-20)(x+20)-8
g(x)=(x-20)(x+20)+16

ist der Ansatz richtig?
Für jegliche Tipps oder Hilfestellungen wären wir sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
anwendungsbezogene Int.-Rechn.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 So 30.10.2005
Autor: Zwerglein

Hi, Blubb
(übrigens: Ich ess' auch gerne Spinat!)

> Wir haben eine Aufgabe mit folgender Fragestellung:
>  Aus dem 16mm dicken Plexiglas wird eine Bikonvexlinse
> ausgeschnitten. Ihre beiden Brechnungsflächen sollen ein
> parabelförmiges Profil sowie die in der Zeichnung
> angegebenen Maße besitzen. Bestimme die Funksgleichung der
> beiden Begrenzungsflächen!
>  
> Wir haben uns übrelegt, dass man doch mit Hilfe der
> Nullstellen, die ja angegeben sind, eine Funktionsgleichung
> aufstellen könnte:
>  
> f(x)=(x-20)(x+20)-8
>  g(x)=(x-20)(x+20)+16
>  
> ist der Ansatz richtig?

Leider nein! Denn durch die Subtraktion von 8 bzw. die Addition von 16 gehen die Nullstellen ja verloren!

Wenn Ihr die Nullstellen verwenden wollt, müsst Ihr so vorgehen:

f(x) = k*(x-20)(x+20)
k wird bestimmt aus: f(0) = -8, daher:

k*(-20)*20 = -8 <=> k = [mm] \bruch{8}{400} [/mm] =  [mm] \bruch{1}{50} [/mm]

Also: f(x) = [mm] \bruch{1}{50}*(x+20)(x-20) [/mm] = [mm] \bruch{1}{50}*(x^{2}-400) [/mm]

Analog kriegt Ihr g(x).

Ach ja!
Eine Frage noch:
War die Frage wirklich so gestellt:
"Bestimme die Funktionsgleichung der beiden Begrenzungsflächen!" ??
Eine Fläche hat doch keine "Funktionsgleichung" - es sei denn sie wäre selbst variabel!
Ich denke, dass hier die obere bzw. untere Randkurve der Fläche gemeint ist, oder?


mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de