www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - anzahl surjektiver abbildungen
anzahl surjektiver abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anzahl surjektiver abbildungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:38 So 29.10.2006
Autor: maybe.

Aufgabe
Sei $n [mm] \in \IN$ [/mm] und [mm] $M_{n}:=\{1,...,n\}$ [/mm]
Wie viele Elemente hat [mm] $\{f: M_{n} \to M_{3} : f \mbox{ surjektiv}\}$? [/mm]

Also ich will doch alle Abbildungen bei denen die 1, die 2 und die 3 'getroffen' werden. Also [mm] f(M_{n})=\{1,2,3\}. [/mm] Erst mal hab ich mir überlegt wie viele Abbildungen es überhaupt gibt, und dachte mir dass ich jetzt mal meine n (von 1 bis n durchnummerierten) Kugeln, also die Elemente von [mm] M_{n} [/mm] vor mir liegen habe und die jetzt in 3 verschieden Urnen werfe. (Die Urnen sind die Elemente 1, 2 und 3 von [mm] M_{3}). [/mm]
Naja für die erste Kugel habe ich 3 Möglichkeiten, für die zweite auch, usw.

also: [mm] |\{f:M_{n} --> M_{3}\}| [/mm] = [mm] 3^{n} [/mm]

Na gut. Jetzt dachte ich mir, ich ziehe die Möglichkeiten bei denen in mindestens einer der Urnen keine Kugel liegt einfach wieder ab:

1.Fall:
IN MINDESTENS EINER DER BEIDEN URNEN IST KEINE KUGEL AM SCHLUSS

--> alle kugeln müssen in 2 urnen verteilt werden. jetzt habe ich doch (ähnlich wie oben) [mm] 2^{n} [/mm] möglichkeiten die kugeln zu verteilen. das schliesst die beiden spezialfälle "alle in eine" und "alle in die andere urne" schon ein. Dann kann ich  mir aber noch aussuchen in welchen beiden urnen alle kugeln liegen sollen. es gibt 3 möglichkeiten 2 urnen auszusuchen (anschaulicher: 3 möglichkeiten eine wegzulassen)

also haben wir [mm] 3*2^{n} [/mm] möglichkeiten für eine nichtsurjektive abbildung

==>  es gibt [mm] 3^{n}-3*2^{n} [/mm] surjektive abbildungen.

Jetzt hätte ich aber nicht geschrieben, wenn ich mir da so sicher wäre :)
Also erstmal habe ich das ganze mal für n=4 ausprobiert:
laut formel : [mm] 3^{4}-3*2^{n}= [/mm] 81-48 = 33
gezählt habe ich aber nur 30 :(

und dann komme ich auf keinen vernünftigen lösungsweg das ganze direkt zu berechnen (also ohne den umweg über "alle mögliche abbildungen")
das müsste sich doch per urnenmodell recht einfach berechnen lassen, ich steh aber irgendwie auf dem schlauch.

also wär super wenn mal jemand schauen kann wo mein fehler liegt und/oder mir sagt wie das ganze auch 'direkt' geht.

vielen dank schonmal

Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
anzahl surjektiver abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 29.10.2006
Autor: angela.h.b.

Hallo,

vielleicht hilft Dir das:

https://matheraum.de/read?t=190431

Gruß v. Angela

Bezug
                
Bezug
anzahl surjektiver abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 29.10.2006
Autor: maybe.

hi angela,
danke für die schnelle antwort, der link hat mir leider nicht weitergeholfen da der dort beschriebene lösungsweg meiner meinung leider falsch ist.

Bezug
                        
Bezug
anzahl surjektiver abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 So 29.10.2006
Autor: angela.h.b.

Hallo,

ich habe in thread drüben einen neuen Lösungsvorschläg gepostet, und ich möchte darum bitten, die Diskussion dort
https://matheraum.de/read?t=190431
fortzusetzen.

Mit Hin- und Herverweisen wird die Sache sonst überflüssigerweise unübersichtlich.

Gruß v. Angela

Bezug
        
Bezug
anzahl surjektiver abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 03.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de