www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - approximation
approximation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

approximation: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:03 Sa 05.02.2005
Autor: Gopal

Hallo,


ich soll folgende Aufgabe lösen:

Finden sie zu den Punkten (1,3), (2,1), (3,5), (4,2) im [mm] \IR^{2}Polynome [/mm] der Form

(i)   [mm] a_{1}x+a_{0}, [/mm]
(ii)  [mm] b_{2}x^{2}+b_{1}x+b_{0}, [/mm]
(iii) [mm] c_{3}x^{3}+c_{2}x_^{2}+c_{1}x+c_{0} [/mm]

wir haben dafür in der Vorlesung ein Lösungsverfahren kennengelernt und in der Übung ein anderes. aber beide haben wir nur für die geradengleichung besprochen.  
dementsprechend habe ich (i) gelöst: [mm] a_{1}=0,1 [/mm] und [mm] a_{0}=2,5. [/mm]

dabei habe ich y=(3,1,5,2) und x=(1,2,3,4) gesetzt. und v=(1,1,1,1)

Vorlesung:
sei U=Span(x,v) und [mm] u_{1}, u_{2} [/mm] eine ONB von U,
dann ist [mm] u_{0}=u_{1}+u_{2} \in [/mm] U mit minimalem Abstand von y.
dann kann man das Gleichungssystem [mm] u_{0}=a_{1}x+a_{0}v [/mm] lösen.

Übung:
[mm] \Delta:= [/mm] "Fehlervektor"
dann ist [mm] y=a_{1}x+a_{0}v+ \Delta. [/mm]
es gilt:  [mm] \Delta [/mm] minimal für < [mm] \Delta,x>=0 [/mm] und < [mm] \Delta,v>=0. [/mm]
man erhält daher durch skalarproduktbildung mit x und v zwei gleichungen mit zwei unbekannten.
--------------------------
soweit so gut. aber wie mache ich meinen ansatz für (ii) und (iii)? meine versuche es analog zu machen sind irgendwie alle gescheitert. wie sehen die vektoren [mm] x^{2} [/mm] und [mm] x^{3}aus? [/mm]

für einen hinweis wäre ich dankbar.

gopal




        
Bezug
approximation: Teilweise
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 09.02.2005
Autor: Hexe

Also das Verfahren kenn ich nicht, ich kann dir aber auf jeden Fall sagen das bei dem Polynom vom Grad 3 eine exakte Lösung rauskommt - du hast 4 Punkte und 4 Unbekannte das gibt ein Gleichungssystem mit eindeutiger Lösung, das is zwar dann vielleicht nicht der weg den sie haben wollen, aber er ist auf jeden Fall richtig. Für den Vektor [mm] x^2 [/mm] würd ich auf blöd mal (1,4,9,16) nehmen oder wird das nix?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de