www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - autonomes System
autonomes System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

autonomes System: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 01.10.2009
Autor: Takeela

Aufgabe
Es sei [mm]v:\IR\rightarrow\IR^{2}[/mm] ein [mm]C^{1}[/mm]-Vektorfeld.  Betrachte das Differentialgleichungssystem

[mm]y^{'}=v(y)[/mm].

Es seien [mm]t_{0}, \tau_{0}\in\IR[/mm] und [mm]x_{0}\in\IR^{2}[/mm] gegeben.

i) Es sei [mm]\mu:\IR\rightarrow\IR^{2}[/mm] eine Lösung dieses Systems zum Anfangswert [mm]\mu(t_{0})=x_{0}[/mm].  Zeige, dass durch [mm]\gamma(t):=\mu(t-(\tau_{0} - t_{0}))[/mm] eine maximale Lösung von [mm]y^{'}=v(y)[/mm] zum Anfangswert [mm]\gamma(\tau_{0})=x_{0}[/mm] gegeben ist.

ii) Es sei zudem vorausgesetzt, dass die Kurve [mm]\alpha:\IR\rightarrow\IR^{2}[/mm], [mm]t\mapsto(cos(t),sin(t))[/mm] eine Lösung ist.  Beweise:  Ist [mm]\mu:\IR\rightarrow\IR^{2}[/mm] eine Lösung mit [mm]\parallel\mu(t_{0})\parallel<1[/mm], so gilt [mm]\parallel\mu(t)\parallel<1[/mm] [mm]\forall t\in\IR[/mm].

Guten Abend,

diese Aufgabenstellung macht mir schwer zu schaffen, d.h. ich habe überhaupt keinen Ansatz, wie ich diese Aussagen beweisen könnte.

Möchte mir vielleicht jemand mit einem Tipp helfen?

Ich würde mir sehr darüber freuen!

Herzlichen Dank im Voraus!

        
Bezug
autonomes System: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Fr 02.10.2009
Autor: rainerS

Hallo!

> Es sei [mm]v:\IR\rightarrow\IR^{2}[/mm] ein [mm]C^{1}[/mm]-Vektorfeld.  
> Betrachte das Differentialgleichungssystem
>  
> [mm]y^{'}=v(y)[/mm].
>  
> Es seien [mm]t_{0}, \tau_{0}\in\IR[/mm] und [mm]x_{0}\in\IR^{2}[/mm]
> gegeben.
>  
> i) Es sei [mm]\mu:\IR\rightarrow\IR^{2}[/mm] eine Lösung dieses
> Systems zum Anfangswert [mm]\mu(t_{0})=x_{0}[/mm].  Zeige, dass
> durch [mm]\gamma(t):=\mu(t-(\tau_{0} - t_{0}))[/mm] eine maximale
> Lösung von [mm]y^{'}=v(y)[/mm] zum Anfangswert
> [mm]\gamma(\tau_{0})=x_{0}[/mm] gegeben ist.
>  
> ii) Es sei zudem vorausgesetzt, dass die Kurve
> [mm]\alpha:\IR\rightarrow\IR^{2}[/mm], [mm]t\mapsto(cos(t),sin(t))[/mm] eine
> Lösung ist.  Beweise:  Ist [mm]\mu:\IR\rightarrow\IR^{2}[/mm] eine
> Lösung mit [mm]\parallel\mu(t_{0})\parallel<1[/mm], so gilt
> [mm]\parallel\mu(t)\parallel<1[/mm] [mm]\forall t\in\IR[/mm].
>  
> Guten Abend,
>  
> diese Aufgabenstellung macht mir schwer zu schaffen, d.h.
> ich habe überhaupt keinen Ansatz, wie ich diese Aussagen
> beweisen könnte.
>  
> Möchte mir vielleicht jemand mit einem Tipp helfen?

Zu i: Dass [mm] $\gamma(t)$ [/mm] eine Lösung ist, kannst du durch Einsetzen in die DGL nachrechnen.  Bleibt also noch zu zeigen, dass diese Lösung maximal ist.

Zu ii: Angenommen, es gebe Punkte auf der Lösungskurve [mm] $\mu$ [/mm]  mit [mm] $\|\mu(t)\| \ge [/mm] 1$. Da [mm] $\|\alpha(t)\|=1$ [/mm] für alle t ist, und außerdem alle Punkte vom Betrag 1 auf der Kurve [mm] $\alpha$ [/mm] liegen, muss die Kurve [mm] $\mu$ [/mm] die Kurve [mm] $\alpha$ [/mm] berühren oder schneiden, oder aber drüber springen, also unstetig sein.

Viele Grüße
   Rainer

Bezug
        
Bezug
autonomes System: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 02.10.2009
Autor: Takeela

Vielen Dank, Rainer!

Könnte man die ii) folgendermaßen mathematisch begründen:

[mm]v(y)[/mm] ist nach Voraussetzung [mm] C^{1} [/mm], also stetig differenzierbar.  Hieraus folgt eine lokale Lipschitzbedingung, welche den Eindeutigkeitssatz nach Pikard-Lindelöff anwendbar macht.

Angenommen [mm] \parallel \mu(t) \parallel \ge 1 [/mm], so existiert [mm] \tau_{0} [/mm], sodass [mm] \parallel \mu(\tau_{0}) \parallel = 1 = \parallel \alpha(\tau_{0}) \parallel [/mm].  Nach Pikard-Lindelöff gilt nun aber [mm] \mu(t) = \alpha(t) \forall t\in\IR [/mm], was mit der Anfangsbedingung [mm] \parallel \mu(t_{0}) \parallel < 1 [/mm] im Widerspruch liegt.  

Hieraus folgt die Behauptung.

(Das mit der Unstetigkeit ist ja so, dass es gegen die Definition einer Lösung einer Differentialgleichung spricht)

Zu i)  Naja, zu zeigen dass es eine Lösung ist, ist nicht schwer.  Kann ich nicht sagen, dass [mm] \mu(t) [/mm] eine maximale Lösung ist, da sie auf ganz [mm]\IR[/mm] definiert ist?  Dann wäre [mm]\gamma(t)[/mm] nur eine zeitverschobene maximale Lösung...

Danke :)

Bezug
                
Bezug
autonomes System: Antwort
Status: (Antwort) fertig Status 
Datum: 04:35 Sa 03.10.2009
Autor: MatthiasKr

Hi,
> Vielen Dank, Rainer!
>  
> Könnte man die ii) folgendermaßen mathematisch
> begründen:
>  
> [mm]v(y)[/mm] ist nach Voraussetzung [mm]C^{1} [/mm], also stetig
> differenzierbar.  Hieraus folgt eine lokale
> Lipschitzbedingung, welche den Eindeutigkeitssatz nach
> Pikard-Lindelöff anwendbar macht.
>  

hoert sich plausibel an.

> Angenommen [mm]\parallel \mu(t) \parallel \ge 1 [/mm], so existiert
> [mm]\tau_{0} [/mm], sodass [mm]\parallel \mu(\tau_{0}) \parallel = 1 = \parallel \alpha(\tau_{0}) \parallel [/mm].

hier musst du wohl noch einen kleinen umweg ueber aufgabe i) gehen: es gibt [mm] $t_0,\tau_0$ [/mm] so dass [mm] $\mu(t_0)=\alpha(\tau_0)$. [/mm] nach aufg. i) kannst du aber zu einer translatierten (?) funktion [mm] $\tilde{\mu}$ [/mm] uebergehen, fuer die dann das gewuenschte gilt.

>  Nach Pikard-Lindelöff gilt nun aber [mm]\mu(t) = \alpha(t) \forall t\in\IR [/mm],
> was mit der Anfangsbedingung [mm]\parallel \mu(t_{0}) \parallel < 1[/mm]
> im Widerspruch liegt.  
>

genau!

> Hieraus folgt die Behauptung.
>  
> (Das mit der Unstetigkeit ist ja so, dass es gegen die
> Definition einer Lösung einer Differentialgleichung
> spricht)
>  
> Zu i)  Naja, zu zeigen dass es eine Lösung ist, ist nicht
> schwer.  Kann ich nicht sagen, dass [mm]\mu(t) [/mm] eine maximale
> Lösung ist, da sie auf ganz [mm]\IR[/mm] definiert ist?  Dann wäre
> [mm]\gamma(t)[/mm] nur eine zeitverschobene maximale Lösung...
>  

sollte so gehen, ja.

> Danke :)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de