www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - b-adische Darstellung
b-adische Darstellung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

b-adische Darstellung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:40 Do 05.05.2016
Autor: X3nion

Hallo zusammen!

Ich verstehe die Definition eines b-adischen Bruches nicht ganz.
Sie lautet wie folgt:

+- [mm] \summe_{n=-k}^{\infty} a_{n}b^{-n}, [/mm] mit k [mm] \ge [/mm] 0, [mm] a_n \in \In, [/mm] 0 [mm] \le a_n [/mm] < b.

Nehmen wir als Beispiel b = 10, unser gewöhnliches Dezimalsystem.
Da das n [mm] \le [/mm] 0 ist (da k [mm] \ge [/mm] 0), könnte ich ja damit nur Zehnerpotenzen mit positiver Hochzahl betrachten, da -n [mm] \ge [/mm] 0, also [mm] a_0 b^0 [/mm] + [mm] a_{-1} b^1 [/mm] +  [mm] a_{-2} b^2 [/mm] ... aber wie betrachte ich hiermit die Zahlen nach dem Komma, wenn k [mm] \ge [/mm] 0 ist?

Irgendwie stehe ich hier auf dem Schlauch, deshalb würde ich mich über eure Tipps freuen!

Viele Grüße und noch einen angenehmen Feiertag,
X3nion

        
Bezug
b-adische Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Do 05.05.2016
Autor: chrisno

das Minuszeichen bei [mm] $b^{-n}$ [/mm] muss weg.

Bezug
                
Bezug
b-adische Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Do 05.05.2016
Autor: X3nion

Hi chrisno,
danke für deine Antwort!

Hmm so kann man die Zahlen nach dem Komma angeben, das macht Sinn.
Aber was wäre zum Beispiel mit der Zahl 123? Wenn k [mm] \ge [/mm] 0, so ist n [mm] \le [/mm] 0, und die Zehnerpotenzen wären dann 1, 1/10, 1/100, ...
und da 0 [mm] \le a_n [/mm] < 10, könnte ich dann doch höchstens die Zahl 9 vor dem Komma angeben?

Ich stehe immer noch auf dem Schlauch :D

Gruß X3nion

Bezug
                        
Bezug
b-adische Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Fr 06.05.2016
Autor: fred97

Der Exponent bei b ist doch -n ! Vielleicht helfen Beispiele.

   $ [mm] \summe_{n=-k}^{\infty} a_{n}b^{-n} [/mm] $

Sei also b=10.


Im Falle k=-3 ist

$ [mm] \summe_{n=-k}^{\infty} a_{n}b^{-n}=a_{-3}10^3+a_{-2}10^2+a_{-1}10+a_0+ \bruch{a_1}{10} [/mm] + [mm] \bruch{a_2}{10^2} +.....=a_{-3}a_{-2}a_{-1}a_0,a_1a_2.....$ [/mm]

FRED


Bezug
                                
Bezug
b-adische Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Fr 06.05.2016
Autor: X3nion

Guten Morgen FRED,

ach ja klar, jetzt leuchtet es mir ein was mein Denkfehler war .. danke für die Aufklärung!
.
Gruß X3nion

Bezug
                                
Bezug
b-adische Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:48 Fr 06.05.2016
Autor: chrisno

Es war bei mir schon wieder mal zu spät am Abend....

Bezug
        
Bezug
b-adische Darstellung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 07.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de