www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - bedingt, unbedingt konvergent
bedingt, unbedingt konvergent < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingt, unbedingt konvergent: Verständnis
Status: (Frage) beantwortet Status 
Datum: 12:33 Do 01.12.2005
Autor: Reaper

Hallo....ich kapier noch nicht so ganz die Definition der bedingten bzw. unbedingten Konvergenz...ein paar Bsp. zum Vorstellen wären auch ganz nett...:)

Im Skript:
Sei  [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] eine Reihe.
a.) ist f:  [mm] \IN [/mm] ->  [mm] \IN [/mm] bijektiv, so heißt [mm] \summe_{n=1}^{ \infty} a_{f(n)} [/mm]
eine Umordnung von  [mm] \summe_{n=1}^{ \infty} a_{n}. [/mm]

Heißt dass wenn ich [mm] a_{f(1)} [/mm] habe es abbildet nach [mm] a_{1} [/mm] ?

Ich kann mir dass so theoretisch nicht vorstellen....

b.) [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] heißt unbedingt konvergent  [mm] \gdw [/mm]
Jede Umordnung von  [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] konvergiert und hat dieselbe Summe (nähmlich [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] ).

Tja...wenn ich nbicht weiß was Umordnung heißt kann ich das wohl vergessen....

c.) [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] heißt bedingt konvergent  [mm] \gdw [/mm]
[mm] \summe_{n=1}^{ \infty} a_{n} [/mm] ist konvergent aber nicht unbedingt konvergent.

Braucht man also zur bedingten Konvergenz nur die Konvergenz der Folge und sonst nichts?
Wenn ja was ist dann der Unterschied zwischen bedingt konvergent und konvergent?

mfg,
Hannes

        
Bezug
bedingt, unbedingt konvergent: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Fr 02.12.2005
Autor: banachella

Hallo Hannes!

Die Begriffe bedingte und unbedingte Konvergenz zielen darauf ab, ob die Summationsreihenfolge relevant ist. Machen wir mal ein Beispiel:
[mm] $\summe_{n=1}^\infty (-1)^n\bruch 1n=-\ln(2)$. [/mm]
Aber du kannst diese Summe auch umordnen: Du addierst immer erst zwei positive Zahlen auf, dann ziehst du eine negative ab. In etwa so:
[mm] $-1+\left(\bruch 12+\bruch 14-\bruch 13\right)+\left(\bruch 16+\bruch 18-\bruch 15\right)+\left(\bruch 1{10}+\bruch 1{12}-\bruch 17\right)+\dots$. [/mm]
Jedes der Glieder der ursprünglichen Folge kommt hier genau einmal vor. Aber: Diese Reihe divergiert!
Anders sieht es zum Beispiel bei [mm] $\summe_{n=1}^\infty\bruch 1{n^2}$ [/mm] aus: Jede Umordnung dieser Reihe konvergiert gegen denselben Grenzwert, nämlich [mm] $\bruch{\pi^2}6$. [/mm]

Der Begriff einer Umordnung ist ganz intuitiv gedacht: Du addierst die Glieder in einer anderen Reihenfolge.

Nun zum Unterschied zwischen bedingter und "normaler" Konvergenz: Bei bedingter Konvergenz hat man bereits festgestellt, dass die Reihe zwar konvergent ist, aber nicht unbedingt konvergent.

Ich hoffe, dass dir die Begriffe jetzt etwas klarer geworden sind...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de