www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - bedingte Wahrscheinlichkeit
bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 So 15.06.2008
Autor: Martin.HK

Aufgabe
Zur Früherkennung einer Stoffwechselkrankheit bei Säuglingen wird eine neue Untersuchungsmethode entwickelt. Mit ihr wird die Krankheit in 80% der Fälle zuverlässig erkannt, während der Anteil der irrtümlich als krank eingestuften Säuglingen bei 2% liegt. Durchschnittlich tritt die Krankheit bei 1,0 x [mm] 10^5 [/mm] Geburten 100-mal auf.
WIe groß ist die Wahrscheinlichkeit, dass ein untersuchter Säugling tatsächlich erkrankt ist, obwohl die Untersuchung keinen zuverlässigen Hinweis darauf ergeben hat ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe große Probleme mit Stochastik und bin mir desshalb bei meiner Lösung ziehmlich unsicher. Wäre desshalb für eine  Korrektur bzw. eine Bestätigung meiner Rechnung sehr dankbar.

D: Diagonose, dass eine Person krank ist
K: Person ist krank

P (D) = 0,8          (Wahrscheinlichkeit für D unter der Bedingung K)
K
    _
P (D) = 0,2 (Wahrscheinlichkeit für nicht- D unter Bedingung K)
K
      _
P_ (D) = 0,98 ( Wahrscheinlichkeit für nicht -D unter Bedingung nicht-K)
  K

P (K) = 1 / [mm] 10^3 [/mm]
    _
P (K) = 1- P(K)

                                              
ges.: K unter der Bedingung nicht-D
          

        [mm] (1/10^3 [/mm] x 0,2) / (1 / [mm] 10^3 [/mm] x 0,2) + (1- [mm] 1/10^3) [/mm] x 0,98) = 0,02
                                                                      



        
Bezug
bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 15.06.2008
Autor: Martinius

Hallo,

> Zur Früherkennung einer Stoffwechselkrankheit bei
> Säuglingen wird eine neue Untersuchungsmethode entwickelt.
> Mit ihr wird die Krankheit in 80% der Fälle zuverlässig
> erkannt, während der Anteil der irrtümlich als krank
> eingestuften Säuglingen bei 2% liegt. Durchschnittlich
> tritt die Krankheit bei 1,0 x [mm]10^5[/mm] Geburten 100-mal auf.
>  WIe groß ist die Wahrscheinlichkeit, dass ein untersuchter
> Säugling tatsächlich erkrankt ist, obwohl die Untersuchung
> keinen zuverlässigen Hinweis darauf ergeben hat ?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe große Probleme mit Stochastik und bin mir desshalb
> bei meiner Lösung ziehmlich unsicher. Wäre desshalb für
> eine  Korrektur bzw. eine Bestätigung meiner Rechnung sehr
> dankbar.
>
> D: Diagonose, dass eine Person krank ist
>  K: Person ist krank
>  
> P (D) = 0,8          (Wahrscheinlichkeit für D unter der
> Bedingung K)
>   K
>      _
>  P (D) = 0,2 (Wahrscheinlichkeit für nicht- D unter
> Bedingung K)
>   K
>        _
>  P_ (D) = 0,98 ( Wahrscheinlichkeit für nicht -D unter
> Bedingung nicht-K)
>    K
>  
> P (K) = 1 / [mm]10^3[/mm]
>      _
>  P (K) = 1- P(K)
>  
>
> ges.: K unter der Bedingung nicht-D
>            
>
> [mm](1/10^3[/mm] x 0,2) / (1 / [mm]10^3[/mm] x 0,2) + (1- [mm]1/10^3)[/mm] x 0,98) =
> 0,02

Richtig gedacht & die Rechnung ist richtig, aber das Ergebnis ist nicht korrekt angegeben.

P = 0,00020   oder   P=0,020 %


LG, Martinius


Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 So 15.06.2008
Autor: Martin.HK

Alles klar, vielen Dank für die schnelle Antwort.

Mit freundlichen Grüßen,
Heilmann Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de