www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - bedingter Erwartungswert
bedingter Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:56 Sa 15.11.2008
Autor: AndyK

Aufgabe
Seien [mm]X_{1}[/mm] und [mm]X_{2}[/mm] unabhängige [mm]\pi_{\lambda}[/mm]-Verteilte (Poisson-Verteilt mit Parameter [mm]\lambda[/mm]) Zufallsvariablen, und sei [mm]Y = X_{1} + X_{2}[/mm]. Man berechne [mm]P(X_{1} = i|Y)[/mm].

Hallo zusammen, also ich weiß, dass ich [mm]P(X_{1} = i|Y)[/mm] mit hilfe der bedingen Wahrscheinlichkeit ausrechnen kann. Also mit [mm]E(1_{\{X_{1}= i\}}|Y)[/mm]. Was mir hier Kopfschmerzen bereitet ist, dass [mm]Y[/mm] als Summe von [mm]X_{1}[/mm] und [mm]X_{2}[/mm] gegeben ist.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 15.11.2008
Autor: luis52

Moin Andreas,

zunaechst ein [willkommenmr]

Es ist fuer [mm] $y=0,1,2,\dots$ [/mm]

[mm] $P(X_1=x\mid X_1+X_2=y)=\frac{P(X_1=x\cap X_1+X_2=y)}{P(X_1+X_2=y)}=\frac{P(X_1=x\cap x+X_2=y)}{P(X_1+X_2=y)}=\dots$ [/mm]

fuer [mm] $x=0,1,2,\dots,y$. [/mm]

Kobra, uebernehmen Sie ;-) Nutze aus, dass [mm] $Y=X_1+X_2$ [/mm] Poisson-verteilt ist mit
Parameter [mm] $2\lambda$. [/mm]

vg Luis


Bezug
                
Bezug
bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Sa 15.11.2008
Autor: AndyK

Hallo Luis,
danke für deine Antwort!

Ich hab mir mal dazu ein paar gedanken gemacht:
Es ist ja so, dass in meiner Aufgabe das j (bei dir das y) nicht angegeben und das i (bei dir das x) fest ist. Also wird ja die Wahrscheinlichkeit davon abhängen, welchen Wert man für y verwendet. Aus meinem Skript und der Gleichung, die ich schon erwähnt hatte, hab ich mir dann mit deinem Hinweis folgendes überlegt:

[mm]P(X_1=i|Y) = E(1_{\{X_1=i\}}|Y) = \sum_{j=i}^{\infty}\frac{P(X_1=i,X_1+X_2=j)}{P(X_1+X_2=j)}1_{\{Y=j\}}=\sum_{j=i}^{\infty}\frac{P(X_1=i,X_2=j-i)}{P(X_1+X_2=j)}1_{\{Y=j\}}[/mm]

Da ja [mm]j \ge i[/mm] sein muss, habe ich den Startindex der Summe angepasst.
Wegen der Unabhängigkeit von [mm]X_1[/mm] und [mm]X_2[/mm] erhalte ich dann:

[mm]= \sum_{j=i}^{\infty}\frac{P(X_1=i)P(X_2=j-i)}{P(X_1+X_2=j)}1_{\{Y=j\}}[/mm]

Wenn ich nun verwende, dass [mm] $X_1$, $X_2\ \pi_\lambda$ [/mm] und [mm] $X_1+X_2\ \pi_{2\lambda}$-verteilt [/mm] sind, erhalte ich:

[mm] $=\sum_{j=i}^{\infty}\frac{e^{2\lambda}j!}{(2\lambda)^j}\cdot\frac{\lambda^i}{e^{\lambda}i!}\cdot\frac{\lambda^{j-i}}{e^{\lambda}(j-i)!}\cdot 1_{\{Y=j\}} [/mm] = [mm] \sum_{j=i}^{\infty}\frac{1}{2^j} [/mm] {j [mm] \choose [/mm] i} [mm] 1_{\{Y=j\}}$ [/mm]

Auftrag erfüllt? ;-)

Bezug
                        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 15.11.2008
Autor: luis52

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Andreas,

leider ist mir deine Notation fremd.  Ich interpretiere $1_{\{Y=j\}$ als
eine Indikatorvariable, deren konkrete Werte in der Form $  1_{\{Y=j\}} (\mbox{irgendwas)$ geschrieben werden. Insbesondere ist mir nicht klar,
wie die Reihe

$\sum_{j=i}^{\infty}\frac{1}{2^j} {j \choose i} 1_{\{Y=j\}} $

berechnet werden soll.

Ich beziehe mich auf die m.W. gaengigere Defintion der bedingten
Wsk-Funktion, wie sie beispielsweise []hier, Seite 21
zu finden ist. Sie bezieht sich auf [mm] $x,y\in\IR$, [/mm] und du kannst sie
begreifen als eine Funktion von $x$, sagen wir $g(x)$. Ersetzt du x durch
X, so erhaeltst du die Zufallsvariable $g(X)$. Ich denke, dass Analoges
in deiner Aufgabenstellung gemeint ist.

Deine Stratige sollte also sein:

1) Gib dir [mm] $i,j\in\IR$ [/mm] vor.
2) Bestimme [mm] $P(X_1=i\mid [/mm] Y=j)$
3) Begreife das Ergebnis aus 2) als eine Funktion von j, sagen wir $g(j)$
4) Die Zufallsvariable $g(Y)$ ist das gesuchte Ergebnis

Leider habe ich die Berechnung von   [mm] $P(X_1=i\mid [/mm] Y=j)$ mit deiner
Erwartungswertformel nicht parat (wenngleich ich vermute, dass du damit
auch nicht allzu sattelfest bist). Ich fuerchte, einen anderen
Loesungsweg als den hier aufgezeigten, kann ich dir nicht bieten ...


vg Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de