www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - berechnen
berechnen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnen: korrektur, tipp
Status: (Frage) beantwortet Status 
Datum: 22:11 Sa 17.04.2010
Autor: Kinghenni

Aufgabe
Berechnen Sie:
[mm] \bruch{3-i}{4i-1},(7+2i)e^{i\bruch{\pi}{4}},|-7e^{3+2i}| [/mm]

also ich hoffe es is gemeint das ich das auf x+iy form bringen soll
[mm] \bruch{3-i}{4i-1}=\bruch{3-i}{4i-1}*\bruch{-4i-1}{-4i-1}=\bruch{-3-4}{17}+i\bruch{4-12}{17}= \bruch{-7}{17}-i\bruch{8}{17} [/mm]
bei der zweiten bin ich mir nicht sicher
[mm] (7+2i)e^{i\bruch{\pi}{4}}=7e^{i\bruch{\pi}{4}}+2ie^{i\bruch{\pi}{4}} [/mm]
[mm] 7e^{i\bruch{\pi}{4}}\Rightarrow [/mm] x= 7cos45°....dachte einfach [mm] \bruch{\pi}{4} [/mm] als bogen maß sind 45°, y=7sin45°
[mm] 2ie^{i\bruch{\pi}{4}} [/mm] analog
damit komme ich insgesamt auf [mm] \bruch{5}{2}\wurzel{2}+i\bruch{9}{2}\wurzel{2} [/mm]
so bei der dritten hab ich ka wie ich vorgehen muss...weil ich nicht weiß wieviel grad das sind

        
Bezug
berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 So 18.04.2010
Autor: leduart

Hallo
der letzte Term ist doch ein Betrag!
[mm] |7*e^3*e^{2i}|=7*e^3 [/mm] da spielt doch er Winkel keine Rolle.
Gruss leduart

Bezug
                
Bezug
berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 So 18.04.2010
Autor: Kinghenni

hey, danke für deine antwort, aber ich verstehs nicht
ja betrag, aber der war doch definiert
[mm] |z|=\wurzel{x^2+y^2} [/mm]
selbst wenn ich vom winkel weggehe

[mm] |7*e^3*e^{2i}|=\wurzel{x^2+y^2} [/mm]
[mm] |7*e^3*e^{2i}|^2=x^2+y^2 [/mm]
naja aber der weg wird wohl auch nix bringen



Bezug
                        
Bezug
berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 So 18.04.2010
Autor: leduart

Hallo
du musst doch ausser der darstellung von z als x+iy
auch noch die sog. "Moivre" Darstellung kennen
[mm] z=r*e^{i\phi} [/mm]  dabei ist r der Betrag, [mm] \phi [/mm] der winkel zur reellen Achse-
du kannst die Zahl natürlich auch schreiben als [mm] r(cos\phi+i*sin\phi) [/mm] hier also
[mm] 7*e^3*(cos(2)+i [/mm] sin(2))
beim Betrag fällt die Klammer wegen sin^2a+cos^2a=1 weg.
2 ist der winkel im Bogenmass! wenn du unbedingt den in Grad wisen willst.
[mm] \alpha(Grad)=360/2\pi*\alpha(bogen) [/mm]
also 2 im Bogenmass =114,59°
Aber im Bogenmass zu rechnen solltest du dir angewöhnen! (also etwa 2 ist ungefähr [mm] \pi/3=120° [/mm] und so!)
Gruss leduart

Gruss leduart

Bezug
                                
Bezug
berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 So 18.04.2010
Autor: Kinghenni

ahhh, vielen vielen dank leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de