www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - berechnen von möglichkeiten
berechnen von möglichkeiten < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnen von möglichkeiten: korrektur
Status: (Frage) beantwortet Status 
Datum: 14:45 Sa 25.10.2008
Autor: eumel

Aufgabe
für einen kurs werden 5 von 8 männern und 7 von 11 frauen ausgesucht. diese 12 personen sollen vorträge halten.
wieviele möglichkeiten gibt es, wenn
1) im 1. teil nur die männer, im 2. nur die frauen vortragen?
2) die reihenfolge egal ist?

hallo :)
ich hab mir gedanken dazu gemacht und würde gerne wissen, ob die ansätze stimmen:

- anzahl der möglichkeiten 5 von 8 auszuwählen: [mm] M_{m}=\bruch{8!}{(8-5)!} [/mm]
- " 7 von 11 auszuwählen: [mm] M_{f}=\bruch{11!}{(11-7)!} [/mm]

zu 1)
- möglichkeiten männer auf die ersten 5 plätze zu verteilen: [mm] V_{m}=5! [/mm]
- " frauen auf die letzten 7 plätze zu verteilen: [mm] V_{f}=7! [/mm]

=> [mm] M_{f}*V_{m}*M_{f}*V_{f} [/mm] , [mm] M_{m}*V_{m} [/mm] müsste doch die anzahl der möglichkeiten sein, von 8 männern 5 auszuwählen und eine beliebige reihenfolge zu erstellen, analog für frauen

zu 2)
=> [mm] M_{m}*M_{f} [/mm] * 12! , wobei [mm] M_{m}*M_{f} [/mm] die anzahl der möglichkeiten ist, 5 von 8 männern und zusätzlich 7 von 11 frauen zu wählen, eben noch multipliziert für ne beliebige belegung der reihenfolge an vorträgen.

stimmt das so in etwa? oder komplette shitte? ^^
lg und danke schonmal :)


        
Bezug
berechnen von möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 03:01 So 26.10.2008
Autor: Fulla

Hallo eumel,


> für einen kurs werden 5 von 8 männern und 7 von 11 frauen
> ausgesucht. diese 12 personen sollen vorträge halten.
> wieviele möglichkeiten gibt es, wenn
>  1) im 1. teil nur die männer, im 2. nur die frauen
> vortragen?
>  2) die reihenfolge egal ist?
>  hallo :)
>  ich hab mir gedanken dazu gemacht und würde gerne wissen,
> ob die ansätze stimmen:
>  
> - anzahl der möglichkeiten 5 von 8 auszuwählen:
> [mm]M_{m}=\bruch{8!}{(8-5)!}[/mm]
>  - " 7 von 11 auszuwählen: [mm]M_{f}=\bruch{11!}{(11-7)!}[/mm]

nein, der Binomialkoeffizient ist definiert als:
[mm] ${n\choose k}=\frac{n!}{(n-k)!\ k!}$ [/mm]
Du hast hier jeweils das $k!$ im Nenner vergessen.

> zu 1)
>  - möglichkeiten männer auf die ersten 5 plätze zu
> verteilen: [mm]V_{m}=5![/mm]
>  - " frauen auf die letzten 7 plätze zu verteilen:
> [mm]V_{f}=7![/mm]

ja :-)

> => [mm]M_{f}*V_{m}*M_{f}*V_{f}[/mm] , [mm]M_{m}*V_{m}[/mm] müsste doch die
> anzahl der möglichkeiten sein, von 8 männern 5 auszuwählen
> und eine beliebige reihenfolge zu erstellen, analog für
> frauen

Hier hast du dich bei einem Index vertan. Wie viele Möglichkeiten gibt es denn nun?


> zu 2)
>  => [mm]M_{m}*M_{f}[/mm] * 12! , wobei [mm]M_{m}*M_{f}[/mm] die anzahl der

> möglichkeiten ist, 5 von 8 männern und zusätzlich 7 von 11
> frauen zu wählen, eben noch multipliziert für ne beliebige
> belegung der reihenfolge an vorträgen.
>  
> stimmt das so in etwa? oder komplette shitte? ^^
>  lg und danke schonmal :)

Ne, is nicht komplette shitte :-P


Lieben Gruß,
Fulla

Bezug
                
Bezug
berechnen von möglichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 26.10.2008
Autor: eumel

nei nei nei, das sollte auch garnicht der koeffizient werden ^^ sollte einfach nur heißen, wenn von 8 leuten 5 ausgewählt werden, hat man
[mm] M_{m}=8*7*6*5*4 [/mm] möglichkeiten (= 8!/(8-5)!=8!/3! )

nur wenn ich jetz die möglichkeiten ausrechne, find ich die herauskommende zahl ziemlich astronomisch.....
also vermittels [mm] M_{m}*M_{f}*B_{m}*B_{f}= [/mm] 6759670579200000

wäre bei 2) dann: [mm] M_{f}*M_{m}*12! [/mm] = 5353659098726400000 ??

wie gesagt, die zahlen find ich sehr astronomisch... ^^

lg
eumel


Bezug
                        
Bezug
berechnen von möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 03:26 Mo 27.10.2008
Autor: Fulla


> nei nei nei, das sollte auch garnicht der koeffizient
> werden ^^ sollte einfach nur heißen, wenn von 8 leuten 5
> ausgewählt werden, hat man
>  [mm]M_{m}=8*7*6*5*4[/mm] möglichkeiten (= 8!/(8-5)!=8!/3! )

Na gut, aber dann darfst du die Anzahl nicht mehr mit $5!$ multiplizieren.
[mm] ${8\choose 5}$ [/mm] ist die Anzahl, wenn die Reihenfolge egal ist.
[mm] ${8\choose 5}*5!=\frac{8!}{(8-5)!}$ [/mm] ist die Anzahl, wenn die Reihenfolge nicht egal ist.

Aber selbst dann kommt eine ziemlich große Anzahl raus... Ich denke, dass du einfach mit dem Binomialkoeffizienten rechnen sollst, d.h. dass die Reihenfolge innerhalb der Männer und Frauen egal ist.

Dann sind es bei 1) [mm] ${8\choose 5}*{11\choose 7}=18480$ [/mm] und bei 2) [mm] ${19\choose 12}=50388$ [/mm] Möglichkeiten.


> nur wenn ich jetz die möglichkeiten ausrechne, find ich die
> herauskommende zahl ziemlich astronomisch.....
>  also vermittels [mm]M_{m}*M_{f}*B_{m}*B_{f}=[/mm] 6759670579200000
>  
> wäre bei 2) dann: [mm]M_{f}*M_{m}*12![/mm] = 5353659098726400000 ??
>  
> wie gesagt, die zahlen find ich sehr astronomisch... ^^
>  
> lg
>  eumel
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de