www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - berechnung
berechnung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Mi 09.04.2008
Autor: jura

Aufgabe
Bei einer linearen Abbildung f: [mm] \IR^2 \to \IR^3 [/mm] gelte: f [mm] \vektor{1\\0\\0}= \vektor{2\\-1\\0}, [/mm] f [mm] \vektor{0\\1\\0}= \vektor{3\\1\\-1}, [/mm] f [mm] \vektor{0\\0\\1}= \vektor{0\\1\\0}. [/mm]
Berechnen Sie f [mm] \vektor{1\\1\\0}, [/mm] f [mm] \vektor{0\\1\\1}, [/mm] f [mm] \vektor{1\\1\\1} [/mm] und f  [mm] \vektor{-2\\-2\\-2}. [/mm]  

zur lösung hab ich mir die gegebenen abbildungen ganz einfach komponentenweise zusammengebastelt, zb:
f [mm] \vektor{1\\1\\0}= [/mm] f [mm] \vektor{1\\0\\0}+ [/mm] f [mm] \vektor{0\\1\\0}= \vektor{2\\-1\\0} [/mm] + [mm] \vektor{3\\1\\-1}= \vektor{5\\0\\-1} [/mm]

geht das so?

und dann bräuchte ich noch ein paar erklärung darüber hinaus: wie hängt das beispielsweise mit der darstellungsmatrix zusammen? oder den basisvektoren der beiden VR? was kann ich aus dieer aufgabe noch alles ableiten oder berechnen?

vielen danke, gruß, jura.

        
Bezug
berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 09.04.2008
Autor: angela.h.b.


> Bei einer linearen Abbildung f: [mm]\IR^2 \to \IR^3[/mm] gelte: f
> [mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]
> f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]
>  Berechnen Sie f
> [mm]\vektor{1\\1\\0},[/mm] f [mm]\vektor{0\\1\\1},[/mm] f [mm]\vektor{1\\1\\1}[/mm]
> und f  [mm]\vektor{-2\\-2\\-2}.[/mm]
> zur lösung hab ich mir die gegebenen abbildungen ganz
> einfach komponentenweise zusammengebastelt, zb:
>  f [mm]\vektor{1\\1\\0}=[/mm] f [mm]\vektor{1\\0\\0}+[/mm] f
> [mm]\vektor{0\\1\\0}= \vektor{2\\-1\\0}[/mm] + [mm]\vektor{3\\1\\-1}= \vektor{5\\0\\-1}[/mm]
>  
> geht das so?

Hallo,

ja, Du nutzt die Linearität der Abbildung.

>  
> und dann bräuchte ich noch ein paar erklärung darüber
> hinaus: wie hängt das beispielsweise mit der
> darstellungsmatrix zusammen? oder den basisvektoren der
> beiden VR? was kann ich aus dieer aufgabe noch alles
> ableiten oder berechnen?

Aus
f[mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]

> f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]

kannst Du Dir die Darstellungsmatrix von f bzgl. der kanonischen Basis E bauen, die des öfteren mit [mm] _EA(f)_E [/mm] bezeichnet wird,

aus
f $ [mm] \vektor{1\\1\\0}, [/mm] $ f $ [mm] \vektor{0\\1\\1}, [/mm] $ f $ [mm] \vektor{1\\1\\1} [/mm] $
die Darstellungsmatrix [mm] _EA(f)_B [/mm] bzgl
der Basen [mm] B=(\vektor{1\\1\\0}, \vektor{0\\1\\1},\vektor{1\\1\\1}) [/mm] und E.

Gruß v. Angela

Bezug
                
Bezug
berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Mi 09.04.2008
Autor: jura


>  
> Aus
>  f[mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]
> > f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]
>  kannst Du Dir die
> Darstellungsmatrix von f bzgl. der kanonischen Basis E
> bauen, die des öfteren mit [mm]_EA(f)_E[/mm] bezeichnet wird,

das wäre also einfach nur [mm] \pmat{ 2 & 3 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0} [/mm]

>  
> aus
>  f [mm]\vektor{1\\1\\0},[/mm] f [mm]\vektor{0\\1\\1},[/mm] f [mm]\vektor{1\\1\\1}[/mm]
> die Darstellungsmatrix [mm]_EA(f)_B[/mm] bzgl
> der Basen [mm]B=(\vektor{1\\1\\0}, \vektor{0\\1\\1},\vektor{1\\1\\1})[/mm]
> und E.

und hier [mm] \pmat{ 5 & 3 & 5 \\ 0 & 2 & 1 \\ -1 & -1 & -1} [/mm]

und wozu kann ich diese matrizen nun ganz konkret nutzen, ich überblicke das noch nicht so ganz- es handelt sich um die gleiche abbildung, jedoch verschiedene darstellungsmatrizen.....?

>  
> Gruß v. Angela

gruß v. jule


Bezug
                        
Bezug
berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 09.04.2008
Autor: angela.h.b.


Hallo,

beide matrizen stellen ein und dieselbe Abbildung dar, jedoch bzgl verschiedener Basen.

[mm] _EA_E [/mm] fürtterst Du mit Spaltenvektoren in Koodinaten bzgl. E, und die Matrix liefert Dir das Bild unter der Abbildung f in Spaltenvektoren bzgl. E.

[mm] _EA_B [/mm] fürtterst Du mit Spaltenvektoren in Koodinaten bzgl. B, und die Matrix liefert Dir das Bild unter der Abbildung f in Spaltenvektoren bzgl. E.

Natürlich kannst Du auch die Matrix  [mm] _BA_B [/mm] aufstellen.
Passende Stichwörter zum Nachlesen in der Literatur wären Basistransformation, Transformationsmatrizen, Darstellungsmatrizen.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de