www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - berechnung der Innenwinkel
berechnung der Innenwinkel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnung der Innenwinkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 04.11.2006
Autor: kev

Aufgabe
wie groß sind die 3 innenwinkel des dreiecks ABC ?  (ohne sinus- und kosinussatz)

A(2/0), B(1/4), C(-1/1)

huhu... also ich habe ein problem mit einer mathe hausaufgabe oO;
ich hocke schon seit 3 stunden hier und versuche rauszubekommen wie man [mm] \alpha [/mm] , [mm] \beta [/mm] , [mm] \gamma [/mm]
Ausrechnet, wenn man keinen cosinus oder sinussatz verwenden darf oO
irgendwie komme ich nie auf das ergebnis was auf dem lösungszettel steht...

Ich habe bisher die steigung ausgerechnet AC : [mm] \bruch{-1}{3} [/mm]
und steigung BC [mm] :\bruch{3}{2} [/mm]
bin mir aber nicht sicher ob das so ganz korrekt ist.
Dann hab ich versucht irgendwelche geradengleichungen aufzustellen, aber ich weiß auch da wieder nicht, ob das richtig ist und warum man es überhaupt macht... hab das irgendwo gelesen, weil ich auch so schon nach lösungen gesucht hab -__-
Naja meine Geradengleichung:
AC: y= - [mm] \bruch{1}{3}x [/mm] + (- [mm] \bruch{2}{3}) [/mm]

und dann hab ich auf einem schmierzettel soviel rumgerechnet, dass ich jetzt selber net mehr weiß, was nun dazugehörte.. aber ich bin ziemlich ratlos oO ich weiß überhaupt nicht mehr weiter... bei der geradengleichung von BC bin ich mir aber ziemlich sicher dass sie stimmte...
Ich weiß aber nicht, was ich nun tun muss, um die winkel rauszubekommen und warum ich überhaupt geradengleichungen dafür brauche.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
berechnung der Innenwinkel: Vektorrechnung?
Status: (Antwort) fertig Status 
Datum: 22:48 Sa 04.11.2006
Autor: chrisno

Wie lautet denn das derzeitige Thema im Unterricht?
Darfst Du denn sin und cos benutzen?
Dann ist hier nach dem Winkel zwischen jeweils zwei Vektoren gefragt.

Bezug
        
Bezug
berechnung der Innenwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Sa 04.11.2006
Autor: MontBlanc

Hi,

also mein Ansatz dabei wäre jetzt erstmal die Längen der Strecken zu bestimmen, also:

[mm] \overline{AB};\overline{BC};\overline{AC} [/mm]

Ich weiß nicht wie es einfacher gehen soll, als mit Pythagoras, was gleich den Vorteil hat, dass rechtwinklige dreiecke entstehen, in denen du ohne Sinus und Kosinussatz rechnen kannst.

Bei mir ist [mm] \overline{AB}=\wurzel{17} [/mm]

[mm] \overline{AC}=\wurzel{10} [/mm] und [mm] \overline{BC}=\wurzel{13} [/mm]

So, also ich habe das ganze jetzt folgendermaßen gerechnet:

Habe mir an jeder seite ein rechtwinkliges Dreieck angezeichnet, und in diesen Dreiecken jeweils die Nebenwinkel von [mm] \alpha,\beta,\gamma [/mm] ausgerechnet, das dann immer von 180 bzw. 90 abgezogen und bin dann zu folgenden ergebnissen gekommen:

[mm] \alpha\approx74,74° [/mm]

[mm] \beta\approx57,53° [/mm]

[mm] \gamma\approx47,73° [/mm]

Könntest du mir vll sagen, ob die ergebnisse stimmen, dann erkläre ich dir den Rechenweg nochmal genau =)

Bis dann

exe

Bezug
                
Bezug
berechnung der Innenwinkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:10 So 05.11.2006
Autor: kev

naja ich bin in der 11... und wir machen gerade geraden und koordinatensysteme und sowas. Und halt punkte bestimmen dort...
funktionen bla blubb.
Ich darf ja eben nicht den sinus und cosinussatz benutzen -.- das hatte ich aber auch in den ersten post geschrieben...
das ist ja mein problem. Sonst würd ich das vielleicht noch gerade so hinbekommen (bin nicht gerade die große leuchte in mathe :( )

Bezug
                
Bezug
berechnung der Innenwinkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:16 So 05.11.2006
Autor: kev

ja, die ergebnisse stimmen so ehm... halb...
nur auf meinem zettel steht:
[mm] \alpha [/mm] = 57,5°
[mm] \beta [/mm] = 47,4°
[mm] \gamma [/mm] = 74,7°
also bei dir ist es irgendwie genau vertauscht :)

Es wäre total nett, wenn du mir den rechenweg erklären könntest :'(

Bezug
                        
Bezug
berechnung der Innenwinkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:22 So 05.11.2006
Autor: Teufel

Hiho.

Das Problem hier ist eigentlich nur, den Schnittwinkel von 2 Geraden zu berechnen.

Dazu solltest du erstmal alle Anstiege der Seiten des Dreiecks berechnen (hast du ja schon).

Dann solltest du dir eine kleine Skizze von dem Dreieck im Koordinatensystem machen.

Und nun musst du wissen: [mm] m=tan(\alpha). [/mm]

Also wenn eine Gerade den Anstieg 1 hat, musst du in deinem Taschenrechner 1 und [mm] TAN^{-1} [/mm] eingeben. Das wären dann 45° (Taschenrechner muss auf DEG eingestellt sein).

Und mit der Skizze müsstest du dann die Schnittwinkel berechnen können!

Es gibt auch noch eine fertige Formel, aber ich bin nicht so ein Freund davon, wenn man nicht weiß, wie diese Formel zustande kommt ;) aber hier ist sie:

Schnittwinkel [mm] \alpha: [/mm] tan [mm] \alpha=\bruch{m_2-m_1}{1+m_1*m_2} [/mm]

[mm] (m_2>m_1) [/mm]



Bezug
        
Bezug
berechnung der Innenwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 05.11.2006
Autor: MontBlanc

Huhu,

also nochmal zu meiner Rechnung, ich habe das erstmal zum besseren Verständnis aufgemalt, schaus dir mal an:

[Dateianhang nicht öffentlich]

So hier siehst du nun die rechtwinkligen Dreiecke in denen du rechnen kannst, dies ist vll nich der eleganteste Weg, aber man kommt zum Ergebnis, das ich dabei nun die Winkelnahmen anders hatte, war ein fehler meinerseits, naja

Bei FRagen melde dich bitte

Bis denn

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                
Bezug
berechnung der Innenwinkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 So 05.11.2006
Autor: kev

ja also... mit der formel kommen die richtigen ergebnisse raus.. aber wenn ich es so mit den außenwinkeln machen will, so wie du gesagt ahst, dann kommt da irgendwie was anderes als ergebnis bei raus :(

und irgendwie bin ich mir auch nicht so ganz sicher, ob ich die steigungswinkel richtig ausgerechnet habe.. wegen dem negativen winkel:
z.B:

AB: [mm] tan^{-1} [/mm] (-4)
= -75,96+180
= 104,04 °
= 180° - 104,04°
= 75, 96 °

und dann um den innenwinkel [mm] \beta [/mm] zu berechnen:
180-75,96-56,3= 47,74...
ich verstehe nicht warum diese rechnung bei AB geht, bei AC, aber bei BC garnicht... und bei AC geht es auch nur, wenn ich so diesen zwischenwert
104,04 einsetze... aaaaah ich blicke grad garnicht mehr durch

Bezug
                        
Bezug
berechnung der Innenwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 So 05.11.2006
Autor: MontBlanc

Hi,

also nehmen wir mal das Dreieck unter [mm] \overline{AC}. [/mm]

Du kennst die Koordinaten von A(2/0) und C(-1/1).

D.h eine seite des Dreiecks ist 3LE lang und die andere 1 LE.

So um jetzt die Länge der dreiecksseite zu bekommen nimmst du den Satz des Pythagoras:

[mm] \wurzel{3^{2}+1^{2}}=\overline{AC} [/mm]

[mm] \overline{AC}=\wurzel{10} [/mm]

So jetzt willst du z.B den Winkel unter Punkt C bekommen, also benutzt du den Sinus (kannst nehmen was du willst, aber ich nehme den Sinus, also

[mm] sin(\gamma_1)=\bruch{3}{\wurzel{10}} [/mm]

[mm] \gamma_1\approx71,57° [/mm]

So jetzt den letzten Winkel in dem Dreieck:

[mm] 180-\gamma_1-90\approx18,43° [/mm]

Jetzt berechnest du in den anderen Dreiecken noch die anderen Teilwinkel und kommst auf das richtige ergebnis ^^.
Dies ist natürlich der wenig elegante weg, das was teufel beschrieben hat ist wesentlich einfacher.

Viel Erfolg beim nachrechnen

Bezug
                        
Bezug
berechnung der Innenwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 So 05.11.2006
Autor: Teufel

Hallo nochmal!

[Dateianhang nicht öffentlich]

(Hab einfach mal das Bild geklaut ;))

Der Steigungswinkel der Geraden interessiert sich stellenweise garnicht.
Der Anstiegswinkel von der y=-4x+irgendwas-Funktion ist 104° ca.

Aber wenn du dir die Skizze anguckst, interessieren dich eher die 76°, weil der Winkel im Dreieck drin liegt. Aber der Winkel ist noch etwas zu groß, also muss man den Kleinen Winkel, der dort außerhalb des Dreiecks liegt, abziehen (die ca. 18° dort). Also wäre der Winkel [mm] \beta [/mm] ca. 58° groß.

Deshalb ist die Skizze wichtig, wenn du das so machst! Damit du weißt, welche Winkel du nun brauchst und ob du Winkel abziehen musst, oder addieren musst.

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                                
Bezug
berechnung der Innenwinkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 So 05.11.2006
Autor: MontBlanc

Hi,

hast du aber schön gemacht "Teufelchen" *gg*

Ich hoffe mal wir konnten dir (david) das einigermaßen näher bringen.

Bis denn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de