www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - bernoulli Ketten
bernoulli Ketten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bernoulli Ketten: anwendungsaufgaben
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 15.06.2011
Autor: Muellermilch

Hallo :)

Auch bei den Aufgaben brauche ich einwenig Hilfe!

1. Die Gewinnwahrscheinlichkeit bei einem Glücksspiel beträgt 20 %.
Mit welcher Wahrscheinlichkeit gewinnt man mindestens zweimal bei 10 Spielen?

- Mit einer Wahrscheinlichkeit von 0,2684 gewinnt man bei 10 Spielen genau einmal. Dann müsse die Wahrscheinlichkeit für 2 Spiele mehr als um das Doppelte verringert werden oder?

Ich habe folgende Gleichung aufgestellt:
p= gesucht; k [mm] \ge [/mm] 2 ; n = 10

P(k [mm] \ge [/mm] 2) = B(10;p;2)= [mm] \vektor{10 \\ 2} [/mm] * [mm] p^{2} [/mm] * [mm] (1-p)^{10-2} [/mm]

Jetzt müsse man nach p auflösen..
wie ist dies zu machen?

________________________________

Weitere Aufgabe:

Steven will Fußballprofi werden. Seine Treffsicherheit beim Schießen von Elfmetern ist p.

a) Wie groß muss p mindestens sein, damit er sich bei 10 Elfmetern mit 60% Wahrscheinlichkeit keinen Fehlschuss leistet?

- p ist gesucht.  ist p nicht = 60 % = 0,6 ?

b) Nun sei p = 0,5. Liegt die Wahrscheinlichkeit, dass der Spieler höchstens 3 der 10 Freischüsse verschießt über 20 % ?

- P(X [mm] \le [/mm] 3)= [mm] \vektor{10 \\ 3}* 0,5^{3} [/mm] * [mm] (1-05)^{10-3} [/mm]
So richtig?



Gruß,
Muellermilch

        
Bezug
bernoulli Ketten: 1. Aufgabe
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 15.06.2011
Autor: barsch

Hi,

> Hallo :)
>  
> Auch bei den Aufgaben brauche ich einwenig Hilfe!
>  
> 1. Die Gewinnwahrscheinlichkeit bei einem Glücksspiel
> beträgt 20 %.
>  Mit welcher Wahrscheinlichkeit gewinnt man mindestens
> zweimal bei 10 Spielen?
>  
> - Mit einer Wahrscheinlichkeit von 0,2684 gewinnt man bei
> 10 Spielen genau einmal. Dann müsse die Wahrscheinlichkeit
> für 2 Spiele mehr als um das Doppelte verringert werden
> oder?
>  
> Ich habe folgende Gleichung aufgestellt:
>  p= gesucht; k [mm]\ge[/mm] 2 ; n = 10
>  
> P(k [mm]\ge[/mm] 2) = B(10;p;2)= [mm]\vektor{10 \\ 2}[/mm] * [mm]p^{2}[/mm] * [mm](1-p)^{10-2}[/mm]
>  
> Jetzt müsse man nach p auflösen..
> wie ist dies zu machen?

viel zu kompliziert ;-). Tipp: Versuche es doch mal über die Gegenwahrscheinlichkeit.

Gruß
barsch


Bezug
                
Bezug
bernoulli Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Mi 15.06.2011
Autor: Muellermilch


> Hi,
>  
> > Hallo :)
>  >  
> > Auch bei den Aufgaben brauche ich einwenig Hilfe!
>  >  
> > 1. Die Gewinnwahrscheinlichkeit bei einem Glücksspiel
> > beträgt 20 %.
>  >  Mit welcher Wahrscheinlichkeit gewinnt man mindestens
> > zweimal bei 10 Spielen?
>  >  
> > - Mit einer Wahrscheinlichkeit von 0,2684 gewinnt man bei
> > 10 Spielen genau einmal. Dann müsse die Wahrscheinlichkeit
> > für 2 Spiele mehr als um das Doppelte verringert werden
> > oder?
>  >  
> > Ich habe folgende Gleichung aufgestellt:
>  >  p= gesucht; k [mm]\ge[/mm] 2 ; n = 10
>  >  
> > P(k [mm]\ge[/mm] 2) = B(10;p;2)= [mm]\vektor{10 \\ 2}[/mm] * [mm]p^{2}[/mm] *
> [mm](1-p)^{10-2}[/mm]
>  >  
> > Jetzt müsse man nach p auflösen..
> > wie ist dies zu machen?
>  
> viel zu kompliziert ;-). Tipp: Versuche es doch mal über
> die Gegenwahrscheinlichkeit.

Ist es dann nicht gleich schwierig?
Gegenwahrscheinlichkeit:
P(X= [mm] \le2) [/mm] = B(10; 0,2; 2) + B(10; 0,2;1) + B(10;0,2;0)

und das Ganze dann : 1 - (die drei B's)
???


> Gruß
>  barsch

Gruß,
Muellermilch


Bezug
                        
Bezug
bernoulli Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Mi 15.06.2011
Autor: barsch

Hi,

> Ist es dann nicht gleich schwierig?

bedenke, es soll nicht p berechnet werden, p ist bekannt (siehe 2. Antwort von mir). Du musst [mm]P(X\geq{2}) [/mm] bestimmen.

[mm]P(X\geq{2}) =P(X=2)+P(X=3)+P(X=4)+P(X=5)+...+P(X=10)=\summe_{i=1}^{10}P(X=i) [/mm]

>  Gegenwahrscheinlichkeit:
>  P(X= [mm]\le2)[/mm] = B(10; 0,2; 2) + B(10; 0,2;1) + B(10;0,2;0)

nicht ganz, die Gegenwkt zu [mm]P(X\geq{2}) [/mm] ist [mm]1-P(X<{2}) =1-(P(X=0)+P(X=1))[/mm]. Und das ist leichter zu berechnen als direkt über [mm]P(X\geq{2}) [/mm].


> und das Ganze dann : 1 - (die drei zwei B's)???

jepp.

Grüße
barsch


Bezug
        
Bezug
bernoulli Ketten: 1. Aufgabe - Teil 2
Status: (Antwort) fertig Status 
Datum: 17:39 Mi 15.06.2011
Autor: barsch

Hi,


> Hallo :)
>  
> Auch bei den Aufgaben brauche ich einwenig Hilfe!
>  
> 1. Die Gewinnwahrscheinlichkeit bei einem Glücksspiel
> beträgt 20 %.
>  Mit welcher Wahrscheinlichkeit gewinnt man mindestens
> zweimal bei 10 Spielen?
>  
> - Mit einer Wahrscheinlichkeit von 0,2684 gewinnt man bei
> 10 Spielen genau einmal. Dann müsse die Wahrscheinlichkeit
> für 2 Spiele mehr als um das Doppelte verringert werden
> oder?
>  
> Ich habe folgende Gleichung aufgestellt:
>  p= gesucht; k [mm]\ge[/mm] 2 ; n = 10
>  
> P(k [mm]\ge[/mm] 2) = B(10;p;2)= [mm]\vektor{10 \\ 2}[/mm] * [mm]p^{2}[/mm] *
> [mm](1-p)^{10-2}[/mm]
>  
> Jetzt müsse man nach p auflösen..
> wie ist dies zu machen?

Nein, p=20%. Gesucht ist [mm]P(X\geq{2})[/mm]. Und das geht über Gegenwkt., wie zuvor geschrieben.

Gruß
barsch


Bezug
        
Bezug
bernoulli Ketten: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 00:15 Do 16.06.2011
Autor: barsch

Hi,

> Weitere Aufgabe:
>  
> Steven will Fußballprofi werden. Seine Treffsicherheit
> beim Schießen von Elfmetern ist p.
>  
> a) Wie groß muss p mindestens sein, damit er sich bei 10
> Elfmetern mit 60% Wahrscheinlichkeit keinen Fehlschuss
> leistet?
>  
> - p ist gesucht.  ist p nicht = 60 % = 0,6 ?

nein, p ist gesucht. Es ist [mm]P(X=10)=...=0,6[/mm] (Also 10 Treffer = kein Fehlschuss!). Jetzt musst du die Gleichung nach p auflösen!

>  
> b) Nun sei p = 0,5. Liegt die Wahrscheinlichkeit, dass der
> Spieler höchstens 3 der 10 Freischüsse verschießt über
> 20 % ?
>  
> - P(X[mm]\le[/mm]3)=[mm]\vektor{10 \\ 3}* 0,5^{3}[/mm]*[mm](1-05)^{10-3}[/mm]
>  So richtig?

Leider nein. Es ist [mm]\vektor{10 \\ 3}* 0,5^{3}*(1-05)^{10-3}=P(X=3)\neq{P(X\leq{3})[/mm].
Wenn die Trefferwkt p=0,5 ist, ist die Wahrscheinlichkeit, dass er verschießt (1-p)=q=0,5. Du musst dann q als Wahrscheinlichkeit in der Binomialverteilung nehmen. Wobei hier ist das egal, da q=p. Richtig erkannt, hast du, dass du [mm]P(X\leq{3})[/mm] berechnen musst, wobei X nun für die Anzahl der Fehlschüsse steht und deswegen auch die Fehlschusswkt (=1-Trefferwkt) verwendet werden muss.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de