www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - beschränktes Wachstum
beschränktes Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränktes Wachstum: Bestätigung einer Funktion
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 11.03.2009
Autor: stinker12345

Aufgabe
In einem Glas befindet sich heißer Tee mit einer Temperatur von 90°C. Die Raumtemperatur beträgt 20°C und der Tee kühlt sich langsam ab. die Fifferenz zwischen Tee-und Raumtemperatur nimmt jede Minute um 10 % des vorigen Wertes ab.

a) Begründen Sie ausführlich, dass der Prozess des Abkühlens duch die Funktion f(t)= 20+70e*^-0,1054t beschrieben werden kann.

Hallo alle miteinander,
ich bin gerade mächtig über ein problem gestolpert:

Anfangstemperatur: 90°C
Raumtemperatur: 20°C

Vokabel: f(x)= a + b*e^-kx
a= raumtemp.= 20
b= 70, weil
f(0)=90=20+b*e^-kx
<=>90=20+b
<=>70=b
Soweit alles klar.
Zu k. -> Gleichsetzten mit 81, weil der Tee sich ja um 10% pro Minute ablühlt.
f(1)=81=20+70*e^-k*1 |-20|:70
<=> 61/70= e^-k |ln
<=> ln (61/70)=-k |*(-)
<=> - ln (61/70)=k
k= auf jeden Fall nicht 0,1054.

Was hab ich falsch gemacht? Muss ich da irgendeinen anderen Rechenweg wählen für k?
Bitte helft mir, wäre so lieb!

              


        
Bezug
beschränktes Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mi 11.03.2009
Autor: Adamantin


> In einem Glas befindet sich heißer Tee mit einer Temperatur
> von 90°C. Die Raumtemperatur beträgt 20°C und der Tee kühlt
> sich langsam ab. die Fifferenz zwischen Tee-und
> Raumtemperatur nimmt jede Minute um 10 % des vorigen Wertes
> ab.
>  
> a) Begründen Sie ausführlich, dass der Prozess des
> Abkühlens duch die Funktion f(t)= 20+70e*^-0,1054t
> beschrieben werden kann.
>  Hallo alle miteinander,
>  ich bin gerade mächtig über ein problem gestolpert:
>  
> Anfangstemperatur: 90°C
>  Raumtemperatur: 20°C
>  
> Vokabel: f(x)= a + b*e^-kx
>  a= raumtemp.= 20
>  b= 70, weil
>  f(0)=90=20+b*e^-kx
>  <=>90=20+b
>  <=>70=b
>  Soweit alles klar.
>  Zu k. -> Gleichsetzten mit 81, weil der Tee sich ja um 10%

> pro Minute ablühlt.
>  f(1)=81=20+70*e^-k*1 |-20|:70
>  <=> 61/70= e^-k |ln

>  <=> ln (61/70)=-k |*(-)

>  <=> - ln (61/70)=k

>  k= auf jeden Fall nicht 0,1054

Nun, weil man hier genau lesen muss! Was um 10% sinkt, ist die Differenz zwischen Raum- und Teetemperatur, nicht die Temperatur des Tees, haha, habs auch überlesen XD

Also sind es bei 0 70 und bei 1 müssen es 7 weniger sein, also ist die temperatur des Tees nach 1 minute 83


>  
> Was hab ich falsch gemacht? Muss ich da irgendeinen anderen
> Rechenweg wählen für k?
>  Bitte helft mir, wäre so lieb!
>  
>
>  


Bezug
                
Bezug
beschränktes Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 11.03.2009
Autor: stinker12345

Fehlt da was?

Bezug
                        
Bezug
beschränktes Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mi 11.03.2009
Autor: leduart

Hallo
Was soll fehlen, deinen Fehler weisst du doch jetzt. Loesen musst du selbst.
Gruss leduart

Bezug
                                
Bezug
beschränktes Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 11.03.2009
Autor: stinker12345

Also ich bekomme mit dem Tipp für k nicht 0,1054 raus, das meinte ich.

Bezug
                                        
Bezug
beschränktes Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Mi 11.03.2009
Autor: Adamantin

Und warum nicht? :) SOrry für die dumme Frage, aber wenn du mit 83 rechnest, kommst du auf [mm] k=-ln(\bruch{63}{70}) [/mm] Wenn das nicht den gesuchten Wert liefert, solltest du nicht an dir, sondern am Taschenrechner zweifeln und ihn zurückgeben...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de