www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - bestimme Integrale
bestimme Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimme Integrale: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 10:25 Fr 25.06.2010
Autor: SnafuBernd

Aufgabe
[mm] \integral_{-\frac{\pi}{3}}^{\frac{\pi}{3}}{e^{x^2}sin(x)dx} [/mm]

Hi,

partielle Integration kann ich hier ja nicht anwenden, weil sin und [mm] e^x [/mm] nie verschwinden, egal ob man integriert oder differenziert. Deswegen habe ich versucht zu substituieren mit [mm] t:=x^2, [/mm] dann kriege ich aber wegen dem [mm] x^2 [/mm] die selben Grenzen raus:

[mm] \integral_{\frac{\pi^2}{9}}^{\frac{\pi^2}{0}}{e^{t}sin(\sqrt{t})\frac{1}{2sqrt{t}}dx} [/mm] = 0, das Ergebnis stimmt zwar mit der Null, aber ich bin mir nicht sicher, ob der Schritt und die daraus folgende Integration stimmt?

Snafu

        
Bezug
bestimme Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Fr 25.06.2010
Autor: MontBlanc

hallo,

das wirst du so nicht integrieren können. da kommt was mit erf(x) heraus. da es aber bestimmt ist, helfen dir symmetrieüberlegungen zum integranden!

lg

Bezug
                
Bezug
bestimme Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 25.06.2010
Autor: SnafuBernd

Hi,

ja mein Problem ist, bei sin weiß ich ja noch das es Ursprungssymetrisch ist, aber bei [mm] e^{x^2} [/mm] sehe ich das nicht sofort? muss ich dann zeigen [mm] e^{x^2}= e^{(-x)^2} [/mm] ..hmm ok jetzt ist es doch sehr Punktsymmetrisch.... d.h. ich geben das Ergebnis Null an und argumentiere mit der Ursprungssymmetrie eine Komposition und punktsymmetrischen Funktionen?

Snafu

Bezug
                        
Bezug
bestimme Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Fr 25.06.2010
Autor: fred97


> Hi,
>  
> ja mein Problem ist, bei sin weiß ich ja noch das es
> Ursprungssymetrisch ist, aber bei [mm]e^{x^2}[/mm] sehe ich das
> nicht sofort? muss ich dann zeigen [mm]e^{x^2}= e^{(-x)^2}[/mm]
> ..hmm ok jetzt ist es doch sehr Punktsymmetrisch.... d.h.
> ich geben das Ergebnis Null an und argumentiere mit der
> Ursprungssymmetrie eine Komposition und punktsymmetrischen
> Funktionen?
>  
> Snafu


Setze $f(x)= [mm] e^{x^2}sin(x)$. [/mm] Dann zeigt man doch so umgehend wie geschwind, dass $f(-x)=-f(x)$ ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de