www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - bestimmen von basen
bestimmen von basen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmen von basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 02.04.2009
Autor: lilalaunebaeri

Aufgabe
[Dateianhang nicht öffentlich]

[mm] v_1, v_2 [/mm] und [mm] v_3 [/mm] sind ja linear unabhängig. Also wäre das schon mal die Basis von U.

Die Basis von V müsste ja [mm] v_4, v_5 [/mm] und [mm] v_6 [/mm] sein, weil die auch alle linear unabhängig sind. Kommt mir etwas komisch vor, dass bei beiden nichts rausfällt, aber hab bei Gauß auch keine Möglichkeit gefunden eine Nullzeile zu machen.

Wäre das richtig erstmal?
Müsste ich für U + V alle 6 Vektoren auf lineare Unabhängigkeit prüfen und die linear unabhängigen würden die Basis bilden?

Und für U geschnitten V müsste ich ja gemeinsame Vektoren finden.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
bestimmen von basen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 02.04.2009
Autor: angela.h.b.


> [Dateianhang nicht öffentlich]
>  [mm]v_1, v_2[/mm] und [mm]v_3[/mm] sind ja linear unabhängig. Also wäre das
> schon mal die Basis von U.
>  
> Die Basis von V müsste ja [mm]v_4, v_5[/mm] und [mm]v_6[/mm] sein, weil die
> auch alle linear unabhängig sind. Kommt mir etwas komisch
> vor, dass bei beiden nichts rausfällt, aber hab bei Gauß
> auch keine Möglichkeit gefunden eine Nullzeile zu machen.
>  
> Wäre das richtig erstmal?

Hallo,

nachgerechnet habe ich das nicht, aber wenn sie linear unabhängig sind, dann sind sie jeweils eine Basis.


>  Müsste ich für U + V alle 6 Vektoren auf lineare
> Unabhängigkeit prüfen

(Daß die 6 nicht linear unabhängig sein können, ist ja eigentlich klar.)

> und die linear unabhängigen würden
> die Basis bilden?

Ja, Du schaust Dir den Rang der entstehenden Matrix an und pickst Dir dann die entsprechende Anzahl linear unabhängiger Vektoren heraus.

>  
> Und für U geschnitten V müsste ich ja gemeinsame Vektoren
> finden.  

Kommt jetzt darauf an, was Du damit meinst.

Du mußt schauen, wie die Vektoren, die man als Linearkombination sowohl der einen als auch der anderen Menge schreiben kann, gemacht sind, also eine Basis für diese finden.

(Im Prinzip geht das so wie in der Schule, wo Du Ebenen zum Schnitt gebracht hast.)

Gruß v. Angela


Bezug
                
Bezug
bestimmen von basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Fr 03.04.2009
Autor: lilalaunebaeri

So, hatte nun für die Basis von U + V [mm] v_1,v_2,v_3,v_4 [/mm] und [mm] v_6 [/mm] raus. Ist nur ein Vektor abhängig.

Aber wie meinst du das genau, dass man den Schnitt wie mit den Ebenen erhalten kann. Setzt man die beiden Unterräume gleich?

Bezug
                        
Bezug
bestimmen von basen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Fr 03.04.2009
Autor: angela.h.b.


> So, hatte nun für die Basis von U + V [mm]v_1,v_2,v_3,v_4[/mm] und
> [mm]v_6[/mm] raus. Ist nur ein Vektor abhängig.

Hallo,

ja, richtig.

>  
> Aber wie meinst du das genau, dass man den Schnitt wie mit
> den Ebenen erhalten kann. Setzt man die beiden Unterräume
> gleich?

Ja, so kann man es machen.


Hier hilft auch noch eine andere Überlegung: aus dem Satz, der was über die Dimensionen von Schnitt und Summe erzählt, kennst Du jetzt ja bereits die Dimension des Schnittes.
Diese Information kannst Du hier auch gut verwenden. Du kommst dann mit Denken aus und mußt nichts rechnen.

Gruß v. Angela






Bezug
                                
Bezug
bestimmen von basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Fr 03.04.2009
Autor: lilalaunebaeri

Dimensionssatz wäre ja

Dim(V+U)= Dim(V) + Dim(U) - Dim(V [mm] \cap [/mm] U)

Das könnte man auch einfach umstellen


Dim(V [mm] \cap [/mm] U)= Dim(V) + Dim(U) - Dim(V+U)

Aber das würde ja nun auf Dim(V [mm] \cap [/mm] U) = 1 kommen.
Was heißt das nun? Dann wäre ja ein Vektor im Schnitt enthalten. Aber der Nullvektor ist damit nicht gemeint, oder?

Bezug
                                        
Bezug
bestimmen von basen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 03.04.2009
Autor: angela.h.b.


> Dimensionssatz wäre ja
>
> Dim(V+U)= Dim(V) + Dim(U) - Dim(V [mm]\cap[/mm] U)
>  
> Das könnte man auch einfach umstellen
>  
>
> Dim(V [mm]\cap[/mm] U)= Dim(V) + Dim(U) - Dim(V+U)
>  
> Aber das würde ja nun auf Dim(V [mm]\cap[/mm] U) = 1 kommen.

Hallo,

ja, so ist es.

>  Was heißt das nun? Dann wäre ja ein Vektor im Schnitt
> enthalten.
>  Aber der Nullvektor ist damit nicht gemeint,
> oder?

Der Nullvektor ist ja in jedem Schnitt enthalten.

Dimension 1 bedeutet doch, daß jede  Basis des Schnittes aus einem Elediement besteht.
(Der Nullvektor ist natürlich keine Basis. Er ist ja linear abhängig.)

Vielleicht fällt Dir ja ein Grund ein dafür, daß [mm] v_5 [/mm] eine Basis des Schnittes ist.

Gruß v. Angela


Bezug
                                                
Bezug
bestimmen von basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 03.04.2009
Autor: lilalaunebaeri

[mm] v_5 [/mm] war ja linear abhängig in U + V. Damit wäre ja ein Vektor in der Form von [mm] v_5 [/mm] auch alleine mit U erzeugbar, oder? Und in V ist er ja eh enthalten.

Bezug
                                                        
Bezug
bestimmen von basen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Fr 03.04.2009
Autor: angela.h.b.


> [mm]v_5[/mm] war ja linear abhängig in U + V. Damit wäre ja ein
> Vektor in der Form von [mm]v_5[/mm] auch alleine mit U erzeugbar,
> oder? Und in V ist er ja eh enthalten.

Hallo,

mir fällt gerade auf, daß mein Tip Müll war.

Das mit der Dimension stimmt zwar, aber der Vektor [mm] v_5 [/mm] war ein Schnellsch(l)uß.

Gruß v. Angela


Bezug
                                                                
Bezug
bestimmen von basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:00 Sa 04.04.2009
Autor: lilalaunebaeri

Wie könnte man das genau machen, um die Basis vom Schnitt zu ermitteln?

Würden das immer welche von den linear abhängigen Vektoren sein? Dann müsste es ja in diesem Fall [mm] v_4 [/mm] sein, wenn es [mm] v_5 [/mm] nicht ist.

Bezug
                                                                        
Bezug
bestimmen von basen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Sa 04.04.2009
Autor: angela.h.b.


> Wie könnte man das genau machen, um die Basis vom Schnitt
> zu ermitteln?

Hallo,

ich würde es nun doch ausrechnen, also die Gleichung [mm] a_1v_1+a_2v_2+a_3v_3=b_4v_4+b_5v-5+b_6v_6 [/mm]  lösen.

>  
> Würden das immer welche von den linear abhängigen Vektoren
> sein? Dann müsste es ja in diesem Fall [mm]v_4[/mm] sein, wenn es
> [mm]v_5[/mm] nicht ist.

Ist Dir klar, daß es nicht unbedingt einer der 6 Vektoren sein muß?


(Denk wieder an Schnitte von Ebenen: die Schnittgerade ist nicht unbedingt in die Richtung eines der vier Richtungsvektoren.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de