www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - bestimmte Art von Matrix
bestimmte Art von Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmte Art von Matrix: Was für eine Art Matrx ist das
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:25 Mo 13.07.2009
Autor: Manolo81

Aufgabe
Zeige, dass die Gleichung [mm] V(\lambda I-Q)=0 \quad (0 \le V \in l) [/mm] nur die Lösung [mm] 0 [/mm] besitzt.

Hallo,

meine Frage dazu ist, was das [mm] V \in l [/mm] bedeutet bzw. was das für eine Art Matrix sein soll?

Vielen Dank!


P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
bestimmte Art von Matrix: Ich fürchte...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Mo 13.07.2009
Autor: angela.h.b.


> Zeige, dass die Gleichung [mm]V(\lambda I-Q)=0 \quad (0 \le V \in l)[/mm]
> nur die Lösung [mm]0[/mm] besitzt.
>  Hallo,
>  
> meine Frage dazu ist, was das [mm]V \in l[/mm] bedeutet bzw. was das
> für eine Art Matrix sein soll?

Hallo,

[willkommenmr].

Ich fürchte, daß Du Dir diese Frage anhand Deiner Literatur selbst beantworten mußt,
denn wie sollen wir riechen, wie die Buchstaben in Deinen Unterlagen definiert wurden?

Gruß v. Angela



Bezug
                
Bezug
bestimmte Art von Matrix: Angaben zu den Bezeichnungen
Status: (Frage) beantwortet Status 
Datum: 10:48 Mo 13.07.2009
Autor: Manolo81

Hallo,

ich dachte, dass das [mm] l [/mm] evtl. eine allgemein gültige Bezeichnung darstellt, von der nur ich bisher nichts gehört habe!? Ich habe auch den Beweis zu dieser Aussage, den ich gerade eben versuche zu verstehen.
Zu den anderen Buchstaben lässt sich in dem Beweis folgendes finden:

[mm] I [/mm] stellt die Einheitsmatrix dar, [mm] 0 < \lambda < \infty [/mm] und [mm] Q = n x n [/mm] Matrix. Außerdem wird weiter unten im Beweis folgendes gesagt: "[mm] 0 \le V \in l [/mm], d.h. [mm] \sum_{j=1}^{\infty} v_{j} < \infty[/mm]". Aber für was genau das [mm] l [/mm] steht, wird nicht erwähnt?

Gruß
Manolo

Bezug
                        
Bezug
bestimmte Art von Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Mo 13.07.2009
Autor: fred97

Ich vermute  $ l $ ist der Raum  $ [mm] l^1 [/mm] $, also der Raum aller reellen Folgen

                     $V =( [mm] v_j)$ [/mm] mit  $ [mm] \sum_{j=1}^{\infty} |v_{j}| [/mm] < [mm] \infty [/mm] $

Ist $ 0 [mm] \le [/mm] V [mm] \in [/mm] l $, so sind alle [mm] v_j \ge [/mm] 0

dennoch macht

             $ [mm] V(\lambda [/mm] I-Q)=0 [mm] \quad [/mm] (0 [mm] \le [/mm] V [mm] \in [/mm] l) $

wenig Sinn, wenn I und Q nxn-Matrizen sind

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de