www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - beweise
beweise < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweise: aufgabe bzw. frage
Status: (Frage) beantwortet Status 
Datum: 15:21 So 23.10.2005
Autor: fertig

Hallo,
ich wollte mal fragen, ob ich folgenden beweis richtig gelöst habe. Falls nicht, könnte mir jemand erklären, was ich falsch gemacht habe?
Beweis: Die Summe von drei beliebigen aufeinander folgenden Zahlen ist durch 3 teilbar.

Meine Lösung:
Vorraussetzung g1; u; g2 mit [mm] \in \IN [/mm] und aufeinanderfolgend
Behauptung: Summe ist durch 3 teilbar
Beweis: g= 2k; 2k + 2
  u=2k + 1

g1 + u + g2 = 2k + (2k +1) + (2k + 2)
       = 3(2k + 1)

3 ist durch sich selbst(also 3) teilbar.


Mit freundlichen Grüßen
fertig


        
Bezug
beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 23.10.2005
Autor: angela.h.b.


> Hallo,
>  ich wollte mal fragen, ob ich folgenden beweis richtig
> gelöst habe. Falls nicht, könnte mir jemand erklären, was
> ich falsch gemacht habe?

hallo,

was Du gemacht hast, ist schon sehr schön, und es sind in Deinem Beweis die wesentlichen Ideen versammelt.
Nur - er ist noch nicht vollständig.
Guck Dir Deine Startzahl an, [mm] g_1=2k. [/mm] Es ist eine gerade Zahl!

Du hast die Aussage bisher also für "die Summe einer gerade Zahl und der beiden folgenden" bewiesen.

Jetzt gibt es zwei Möglichkeiten.
Entweder Du zeigst es jetzt auch noch für eine ungerade Startzahl 2k+1.
Oder Du nimmst irgendeine Zahl k und ihre Nachfolger und zeigst es dafür.
Das ist mit Sicherheit die schönere Möglichkeit.

Gruß v. Angela


>  Beweis: Die Summe von drei beliebigen aufeinander
> folgenden Zahlen ist durch 3 teilbar.
>  
> Meine Lösung:
>  Vorraussetzung g1; u; g2 mit [mm]\in \IN[/mm] und
> aufeinanderfolgend
> Behauptung: Summe ist durch 3 teilbar
>  Beweis: g= 2k; 2k + 2
>   u=2k + 1
>  
> g1 + u + g2 = 2k + (2k +1) + (2k + 2)
>   = 3(2k + 1)
>  
> 3 ist durch sich selbst(also 3) teilbar.
>  
>
> Mit freundlichen Grüßen
>  fertig
>  


Bezug
                
Bezug
beweise: rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:50 So 23.10.2005
Autor: fertig

hi!
Also wäre der beweis jetzt so richtig:
Beweis: g=  k; k + 2
  u=  k+ 1

g1 + u + g2 = k + (k + 1) + (k + 2)
      = 3(k + 1)

3 ist durch sich selbst teilbar.

mfg
fertig


Bezug
                        
Bezug
beweise: Ist okay so!
Status: (Antwort) fertig Status 
Datum: 17:58 So 23.10.2005
Autor: Loddar

Hallo fertig!


[daumenhoch] So stimmt es!

Allerdings brauchst Du ja gar nicht diese Unterteilung in $g_$ und $u_$ .

Es reicht völlig zu schreiben: $Summe \ = \ k + (k+1) + (k+2) \ = \ ...$


Sonst sehr schön ...

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de