www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - beweise mit dem satz von vieta
beweise mit dem satz von vieta < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweise mit dem satz von vieta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 16.03.2010
Autor: lulusoundso

Aufgabe
Zeigen sie mit demSatz von Vieta :
die lösung x1 und x2 der gleichung x² + px + q = 0 haben verschiedene vorzeichen falls q kleiner  als 0 sind beide negativ, falls q größer als 0 und p größer als null sind beide positiv.

hallo, ich hätte mal eine wichtige frage :
wie kann ich die  aufgabe lösen, ich habe keine ahnung..



und wie ist das wenn p kleiner als 0 und q größer als 0 ist ?
danke schon mal (:

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
beweise mit dem satz von vieta: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 16.03.2010
Autor: fred97


> Zeigen sie mit demSatz von Vieta :
>  die lösung x1 und x2 der gleichung x² + px + q = 0 haben
> verschiedene vorzeichen falls q kleiner  als 0 sind beide
> negativ, falls q größer als 0 und p größer als null
> sind beide positiv.
>  hallo, ich hätte mal eine wichtige frage :
>  wie kann ich die  aufgabe lösen, ich habe keine ahnung..

Hast Du Dir die Mühe gemacht und mal nachgeschaut wie der Satz von Vieta lautet ? Ich glaube kaum, denn anderenfalls hättest Du gesehen, dass die Aussage

            q<0 [mm] \Rightarrow x_1 [/mm] und [mm] x_2 [/mm] haben verschiedene Vorzeichen

eine Trivialität ist.

Desweiteren solltest Du die Aufgabenstellung exakt abtippen und nicht so sehr mit Kommata geizen, denn dieser Satz

Zeigen sie mit demSatz von Vieta :

>  die lösung x1 und x2 der gleichung x² + px + q = 0 haben
> verschiedene vorzeichen falls q kleiner  als 0 sind beide
> negativ, falls q größer als 0 und p größer als null
> sind beide positiv.

ist kaum zu verstehen

FRED



>  
>
>
> und wie ist das wenn p kleiner als 0 und q größer als 0
> ist ?
>  danke schon mal (:
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
beweise mit dem satz von vieta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 16.03.2010
Autor: lulusoundso

Aufgabe
nochmal die aufgabe : Zeigen Sie mit dem Satz von Vieta :

Die Lösung [mm] x_{1} [/mm] und [mm] x_{2} [/mm] der gleichung [mm] x^2 [/mm] + px + q = 0 haben verschiedene Vorzeichen.

falls q < 0 sind beide negativ
falls q > 0 und p > 0 sind beide positiv

zusatz : wie ist es bei q > 0 und p < 0

ich hoffe, dass es so verständlicher ist,
und ich habe mir den satz angesehen, ja. und ich habe nur bahnhofverstanden und was eine trivalität ist weiß ich auch nicht, entschuldigung

Bezug
                        
Bezug
beweise mit dem satz von vieta: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Di 16.03.2010
Autor: leduart

Hallo
Was sagt denn der Satz von Vieta über den Zusammenhang zwischen p und x1 und x2 und q und x1 und x2?
Schreib das mal auf. Oder sag genau, was du an dem Satz nicht verstehst.
Gruss leduart

Bezug
                                
Bezug
beweise mit dem satz von vieta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 16.03.2010
Autor: lulusoundso

also der satz sagt aus, dass [mm] x_{1} [/mm] + [mm] x_{2} [/mm] = -p ist
und  [mm] x_{1} [/mm] * [mm] x_{2} [/mm] = q
bedingung  ist, dass D größer oder gleich 0 ist und die quadratische funktion dazu lautet : [mm] x^2 [/mm] + px +q = 0
was ich nicht verstehe, ist wie ich nun die sache mit den vorzeichen beweisen soll.  



Bezug
                                        
Bezug
beweise mit dem satz von vieta: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 16.03.2010
Autor: leduart

Hallo
sieh erst mal q=x1*x2 an. falls q>0 also positiv ist, welche Möglichkeiten (an Vorzeichen gibts dann für x1 und x2?
Wenn du die Möglichkeiten hast, wass ist dann jewils p?
Gruss leduart

Bezug
                        
Bezug
beweise mit dem satz von vieta: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Di 16.03.2010
Autor: fred97


> nochmal die aufgabe : Zeigen Sie mit dem Satz von Vieta :
>  
> Die Lösung [mm]x_{1}[/mm] und [mm]x_{2}[/mm] der gleichung [mm]x^2[/mm] + px + q = 0
> haben verschiedene Vorzeichen.
>
> falls q < 0 sind beide negativ
> falls q > 0 und p > 0 sind beide positiv
>  
> zusatz : wie ist es bei q > 0 und p < 0
>  ich hoffe, dass es so verständlicher ist,

Nein ist es nicht ! So kann die Aufgabenstellung nicht lauten !

Das, schreibst Du, ist zu zeigen:

"Die Lösung $ [mm] x_{1} [/mm] $ und $ [mm] x_{2} [/mm] $ der gleichung $ [mm] x^2 [/mm] $ + px + q = 0 haben verschiedene Vorzeichen.

falls q < 0 sind beide negativ
falls q > 0 und p > 0 sind beide positiv "

Lies Dir das mal genau durch, siehst du dann vielleicht, dass das nicht passt ?

FRED




>  und ich habe mir den satz angesehen, ja. und ich habe nur
> bahnhofverstanden und was eine trivalität ist weiß ich
> auch nicht, entschuldigung


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de