www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - bijektive Zählfunktion
bijektive Zählfunktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektive Zählfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Do 03.12.2009
Autor: Ferolei

Aufgabe
Seien f: [mm] \IN \to \IN [/mm] eine bijektive Abbildung und N [mm] \in \IN. [/mm]
Zeigen Sie, dass es dann ein M [mm] \in \IN [/mm] mit f({1,2,3,...,N}) [mm] \subset [/mm] {1,2,3,...,M} gibt.

Hallo,

erst einmal versuche ich zu beschreiben, was da steht.

Die natürlichen Zahlen als Zählfunktion sind bijektiv. Das heißt, zu jeder Zahl gibt es genau eine Nummer/Position beim Zählen

Bsp. ich Zähle :   2,5,4,1,7,...

Dann ist die f(2)=1,f(5)=2,f(4)=3, ...

Da es eine Bijektion ist, muss es dann doch für jede Position
also für jedes f(N) ein M geben?

Ich finde diese Aussage so trivial... weiß nicht, wie man das allgemein zeigen kann.

Habe ich die Aufgabe denn richtig verstanden ?

So, aber so wie es in der Aufgabe steht, sind die Bilder eine echte Teilmenge von den Urbildern. Also gibt es noch weitere Elemente  bei den Urbildern?

Das würde doch dem wiedersprechen, dass die beiden Mengen bijektiv sind und damit gleichmächtig...


lG, Ferolei

        
Bezug
bijektive Zählfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Fr 04.12.2009
Autor: fred97

Merkwürdige Aufgabe ...... ?  Lautet sie wirklich so, wie Du es geschrieben hast ?

Wenn ja, so leistet doch schon

                $M := max [mm] \{f(1), f(2), ...., f(N) \}$ [/mm]

das Gewünschte und dafür braucht man die Bijektivität von f überhaupt nicht.

FRED

Bezug
                
Bezug
bijektive Zählfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 Fr 04.12.2009
Autor: Ferolei

Diese Aufgabe habe ich richtig notiert :)

Aber was ist denn mit dem "echte Teilmenge" Symbol. Das müsste doch heißen, dass es noch Elemte gibt, die keine Zählnummer haben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de