www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - bijektivität
bijektivität < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Sa 23.05.2009
Autor: quade521

Weshalb ist die lineare abbildung einer invertierbaren matrix bijektiv? hängt es damit zusammen, dass man asu der abbildung die ursprüngliche abbildung wieder rekonstruieren kann ? aber weshalb muss die matrix dazu invertierbar sein. Sind Matrixen die aus spalten linear abhängiger vektoren bestehen nie invertierbar?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 04:55 So 24.05.2009
Autor: T_sleeper

Hallo,

> Weshalb ist die lineare abbildung einer invertierbaren
> matrix bijektiv?


Bevor du meine Erklärung gleich liest, solltest du dir vielleicht nochmal vor Augen halten, was Bijektivität bedeutet, also wie ihr das definiert habt. Also was ich damit meine ist, weißt du was Umkehrabbildungen sind? Wenn nicht, wirst du Probleme haben, meine Erklärung zu verstehen.

Eine Abbildung f: [mm] A\rightarrow [/mm] B ist bijektiv, wenn:
[mm] (g\circ f)=Id_A [/mm] und [mm] (f\circ g)=Id_B [/mm] gilt.
In diesem Fall, ist [mm] g:B\rightarrow [/mm] A die Umkehrabbildung und wird häufig als [mm] f^{-1} [/mm] geschrieben.
Was Id ist, erkläre ich weiter unten.

Du hast jetzt eine Abbildung, die durch eine invertierbare Matrix beschrieben wird (habe ich das richtig verstanden?). Dann kannst du doch sicher deren Umkehrabbildung durch die Inverse Matrix beschreiben.

Wenn nun f diese Abbildung ist, für die gilt: f(x)=Ax, wobei A die invertierbare Matrix sein soll, dann gibt es eine Abbildung [mm] g(x)=A^{-1}(x). [/mm]
Jetzt betrachten wir mal:
[mm] (g\circ f)(x)=g(f(x))=g(Ax)=A^{-1}A(x)=E_nx=x [/mm] und [mm] E_n [/mm] ist die Einheitsmatrix. Genauso geht es, wenn du [mm] f\circ [/mm] g betrachtest. Also ist g die Umkehrabbildung von f. f ist damit bijektiv.

>hängt es damit zusammen, dass man asu der

> abbildung die ursprüngliche abbildung wieder rekonstruieren
> kann ?

Es hängt also damit zusammen, dass eine solche Abbildung immer eine Umkehrabbildung besitzt (und dazu muss die Abbildung selbst ja bijektiv sein).

Was meintest du mit "ursprünglicher Abbildung"?

> aber weshalb muss die matrix dazu invertierbar sein.

Weil eben genau [mm] f\circ [/mm] g und g?circ f die Identität ergeben müssen, d.h.  ausführlich gesagt, wenn man die Abbildung und deren Umkehrabbildung hintereinanderschaltet und vorher ein x "reinsteckt" wird am Ende genau dieses x als Bild herauskommen.

> Sind Matrixen die aus spalten linear abhängiger vektoren
> bestehen nie invertierbar?

Also zunächst mal sind sowieso nur quadratische (also [mm] n\times [/mm] n) Matrizen überhaupt invertierbar (Warum?).

Und dann hast du quasi recht. Der Rang (also im Falle der Matrizen die Anzahl der linear [mm] \underline{un}abhaengigen [/mm] Zeilen oder Spalten) muss gleich n sein, d.h. wenn du bei einer quadratischen Matrix abhängige Spalten/Zeilen hast, so ist diese nicht invertierbar.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß Sleeper


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de