www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - bildungsgesetz arith. 2. Ordnu
bildungsgesetz arith. 2. Ordnu < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bildungsgesetz arith. 2. Ordnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 02.08.2008
Autor: cmg

Aufgabe
Gegen ist die Zahlenfolge: 1, 5/6, 7/11, 9/18, 11/27, ...

Ermitteln Sie [mm] a_n [/mm]

So,

ich habe Nenner und Zähler getrennt betrachtet. Oben ist die DIfferenz immer zwei, also konnte ich einfach einsetzen in [mm] a_n=a_1 [/mm] + (n-1) * d
=> 3 + (n-1) * 2
<=> 2*n +1

Im Nenner ist der Abstand erst in zweiter Ordnung mit 2 festzustellen.
Nur wie packe ich sowas in ein Bildungsgesetzt, da muss es doch irgendeine Vorschrift geben. Ich bin ca. 30 Minuten am probieren, das kanns doch nicht sein :)

        
Bezug
bildungsgesetz arith. 2. Ordnu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Sa 02.08.2008
Autor: Somebody


> Gegen ist die Zahlenfolge: 1, 5/6, 7/11, 9/18, 11/27, ...
>  
> Ermitteln Sie [mm]a_n[/mm]
>  So,
>  
> ich habe Nenner und Zähler getrennt betrachtet. Oben ist
> die DIfferenz immer zwei, also konnte ich einfach einsetzen
> in [mm]a_n=a_1[/mm] + (n-1) * d
>  => 3 + (n-1) * 2

> <=> 2*n +1

Beinahe, aber [mm] $a_1$ [/mm] ist nicht $3$ sondern $1$ - oder hast Du dies in der obigen Aufgabenbeschreibung falsch hingeschrieben? Da wirst Du wohl beim Hinschreiben des allgemeinen Folgengliedes [mm] $a_n$ [/mm] eine Fallunterscheidung, $n=1$ oder [mm] $n\geq [/mm] 2$, machen müssen.

>
> Im Nenner ist der Abstand erst in zweiter Ordnung mit 2
> festzustellen.
>  Nur wie packe ich sowas in ein Bildungsgesetzt, da muss es
> doch irgendeine Vorschrift geben. Ich bin ca. 30 Minuten am
> probieren, das kanns doch nicht sein :)

Die Folge der ersten Differenzen des Nenners ist also eine arithmetische Folge 1. Ordnung. Schreib die mal hin. Der Nenner selbst ist dann im wesentlichen die zugehörige Summenfolge, denn die Differenz zweier aufeinanderfolgender Glieder der Summenfolge ist ja einfach gleich dem neu dazugekommenen Summanden.

Bezug
        
Bezug
bildungsgesetz arith. 2. Ordnu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 02.08.2008
Autor: Fulla

Hallo cmg,

beim Zähler hast du Recht. Wenn man die 1 als [mm] $\frac{3}{3}$ [/mm] schreibt, ist [mm] $b_n=2n+1$. [/mm]

Beim Nenner fällt mir auf, dass die Differenzen der Zähler und Nenner immer Quadratzahlen sind: 0, 1, 4, 9, 16...
In eine Formel gepackt wäre das: [mm] $c_n=b_n+(n-1)^2$. [/mm] Wenn du das [mm] $b_n$ [/mm] von oben einsetzt, kommst du auf [mm] $c_n=n^2+2$. [/mm]

Insgesamt ist dann
[mm] $a_n=\frac{b_n}{c_n}=\frac{2n+1}{n^2+2}$ [/mm]


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de