www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - binomischer Koeffizient
binomischer Koeffizient < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binomischer Koeffizient: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:53 So 09.11.2008
Autor: webspacer

Guten Abend,
ich habe folgende Frage an euch. Und zwar geht es um Beweis der Aussage, wenn 0 [mm] \le [/mm] k [mm] \le [/mm] n, wobei k und n zu [mm] \IN [/mm] mit 0 gehören, dann gilt für  [mm] \vektor{n \\ k} \not= [/mm] 0.
Also ich habe es durch durch Fallunterscheidung versucht. So ergibt sich bei mir, wenn k>n, dann [mm] \vektor{n \\ k} [/mm] =0. Damit es stimmt, soll 0 als Faktor im Zähler auftreten.
So ergibt sich:
[mm] \bruch{n\*(n-1)...\*(n-(k-1)}{k!} [/mm] =0
dabei kann nur n 0 sein. Aber 0!=1.
Wie kann es sein, dass der Zähler trotzdem 0 als Faktor enthält und der Ausdruck somit gleich 0 ist?
Überprüft bitte meine Überlegung. Vielen Dank  im voraus.

        
Bezug
binomischer Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 So 09.11.2008
Autor: reverend

Versteh ich nicht.
Wieso hast Du denn k>n überhaupt unter den untersuchten Fällen?
In der Aufgabe kam dieser Fall nicht vor, unter den Binomialkoeffizienten im allgemeinen auch nicht.

Bezug
                
Bezug
binomischer Koeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 So 09.11.2008
Autor: webspacer

ist es richtig, wenn ich die Fallunterscheidung für k>n, k<0, was sofort nicht gilt, da k [mm] \in \IN [/mm] mit 0, k=0, k=n mache?
ich habe aber noch nicht eine klare Antwort zur ersten Frage erhalten, helft mir bitte!

Bezug
                        
Bezug
binomischer Koeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 So 09.11.2008
Autor: reverend

Vielleicht liegt das Ausbleiben einer klaren Antwort am Fehlen einer klaren Frage?

Bezug
        
Bezug
binomischer Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 So 09.11.2008
Autor: Al-Chwarizmi

> Damit es stimmt, soll 0 als Faktor im Zähler auftreten.    [kopfschuettel]

willst du zeigen, dass  [mm] \vektor{n\\k} [/mm]  in gewissen Fällen gleich Null ist ?

man soll zeigen, dass dies unter den gegebenen Voraussetzungen nie der Fall ist !




Hallo Nataly


Es gilt   [mm] \vektor{n\\k}=\bruch{n!*(n-k)!}{k!} [/mm]

Wegen [mm] n\in\IN_0 [/mm] , [mm] k\in\IN_0 [/mm] und [mm] k\le [/mm] n ist auch [mm] (n-k)\in \IN_0 [/mm]
Alle Fakultäten von Zahlen aus [mm] \IN_0 [/mm] sind positiv.
Deshalb ist auch

         [mm] \bruch{n!*(n-k)!}{k!} [/mm]

positiv.


[winken]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de