www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - bsp zu kombinatorik
bsp zu kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bsp zu kombinatorik: "Frage"
Status: (Frage) beantwortet Status 
Datum: 16:51 So 28.10.2007
Autor: Dagobert

hallo!
hätte ne frage zu den folgenden 2 beispielen:

[Dateianhang nicht öffentlich]

zu 5.

wie mach ich das da ich ja in einem stall max. 5 pferde haben darf, hätte ich ja [mm] \vektor{16 \\ 5} [/mm] möglichkeiten oder? nur wie begrenze ich das dann?

zu 4.

ich habe ja 16 x, und -1/+1 wäre das dann nicht [mm] \vektor{16 \\ 2} [/mm] ?

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
bsp zu kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 28.10.2007
Autor: koepper


> hallo!
>  hätte ne frage zu den folgenden 2 beispielen:
>  
> [Dateianhang nicht öffentlich]
>  
> zu 5.
>  
> wie mach ich das da ich ja in einem stall max. 5 pferde
> haben darf, hätte ich ja [mm]\vektor{16 \\ 5}[/mm] möglichkeiten
> oder? nur wie begrenze ich das dann?

Wir gehen davon aus, daß die Pferde nicht unterscheidbar sind (in der Aufgabe steht nichts davon, also wäre das noch zu klären)
Von den 17 Pferden darfst du zunächst je 1 fest auf jeden Stall verteilen.
Wäre jetzt keine Maximalbelegung vorgegeben könntest du "Ziehen mit Zurücklegen ohne Beachtung der reihenfolge".
Aber so bleibt dir wohl nur eine schlichte schriftliche Aufzählung.
Daß es hier ein Standardverfahren gibt halte ich für recht unwahrscheinlich, aber wenn du eine geniale (d.h. einfache) Lösung findest, bin ich sehr interessiert.
  

> zu 4.
>  
> ich habe ja 16 x, und -1/+1 wäre das dann nicht [mm]\vektor{16 \\ 2}[/mm]

nein, um die Gleichung zu lösen brauchst du 8 Einsen und 8 -1en. Die Anzahl der Möglichkeiten, aus den 16 Positionen 8 Einsen auszusuchen ist die Anzahl der Mögl. hier insgesamt.

Gruß
Will

Bezug
                
Bezug
bsp zu kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 29.10.2007
Autor: Dagobert

zu4.

also hab ich dann [mm] \vektor{16 \\ 8} [/mm] Möglichkeiten? (=12870)

danke!

Bezug
                        
Bezug
bsp zu kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 29.10.2007
Autor: Zwerglein

Hi, Dagobert,

> zu4.
>
> also hab ich dann [mm]\vektor{16 \\ 8}[/mm] Möglichkeiten? (=12870)

Richtig!

mfG!
Zwerglein


Bezug
        
Bezug
bsp zu kombinatorik: zu 4.
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 29.10.2007
Autor: Somebody


> hallo!
>  hätte ne frage zu den folgenden 2 beispielen:
>  
> [Dateianhang nicht öffentlich]
>  
> zu 5.
>  
> wie mach ich das da ich ja in einem stall max. 5 pferde
> haben darf, hätte ich ja [mm]\vektor{16 \\ 5}[/mm] möglichkeiten
> oder? nur wie begrenze ich das dann?

Hier könnte man von allen zulässigen Stallbelegungen zunächst einmal nur die "absteigend sortierten" aufzählen und dann mit Hilfe einer separaten kombinatorischen Rechnung bestimmen, auf wieviele Arten dieser Typ von Stallbelegung im allgemeinen, in der Regel nicht absteigend sortierten Fall effektiv auftreten kann.
Eine solche Liste von zulässigen absteigend sortierten Stallbelegungen könnte etwa so aussehen:
[mm]\begin{array}{cccccl} \text{Stall 1} & \text{Stall 2} & \text{Stall 3} & \text{Stall 4} & \text{Stall 5} & \text{Fälle dieses Typs}\\ 5 & 5 & 5 & 1 & 1 & \binom{5}{3}\\ 5 & 5 & 4 & 2 & 1 & \binom{5}{2}\cdot 3\cdot2\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}[/mm]

Ich bin auf 10 verschiedene sortierte Fälle gekommen (ohne Gewähr): diese Tabelle ist also zwar länglich - aber immerhin nicht endlos ;-)
Am Ende zählt man einfach die Werte in der letzten Spalte dieser Tabelle zusammen...

Bezug
                
Bezug
bsp zu kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Mo 29.10.2007
Autor: Dagobert

hallo!

danke, dann werd ich so eine tabelle mal anfangen, nur eine frage hätte ich noch, wie kommst du in der 2. zeile auf *3*2 ? ist das einfach die drei ställe die keine 5 pferde haben?

ich hätte die tabelle mal gemacht, bei 10 verschiedene möglichkeiten komme ich auf 730. aber da ich ja die ställe auch noch mal vertauschen kann müsste das ja dann 3650 sein oder?

danke!

Bezug
                        
Bezug
bsp zu kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 Di 30.10.2007
Autor: Somebody


> hallo!
>  
> danke, dann werd ich so eine tabelle mal anfangen, nur eine
> frage hätte ich noch, wie kommst du in der 2. zeile auf
> *3*2 ? ist das einfach die drei ställe die keine 5 pferde
> haben?

Man muss einfach zählen, wieviele verschiedene Stallbelegungen es gibt, bei denen zwei Ställe 5 und je ein Stall 4, 2, bzw. 1 Pferd enthält. Diese Zählung kann man rein formal auf verschiedene Arten machen. So gibt es z.B. [mm] $\binom{5}{2}$ [/mm] Möglichkeiten, die beiden Ställe mit $5$ Pferden aus den insgesamt 5 Ställen auszuwählen.
Unabhängig davon kann man die restlichen 3 Ställe auf $3!$ Arten, bzw. was auf dasselbe hinausläuft, auf [mm] $\binom{3}{1}\cdot\binom{2}{1}\cdot \binom{1}{1}$ [/mm] Arten belegen.

Eine andere Möglichkeit der Zählung ist, aus den insgesamt $5!$ Permutationen einer konkreten Belegung Duplikate (d.h. Ställe mit derselben Anzahl Pferde) durch Division zu eliminieren: [mm] $\frac{5!}{2!\cdot 1!\cdot 1!\cdot 1!}$ [/mm] oder, kürzer, [mm] $\frac{5!}{2!}$. [/mm]

>  
> ich hätte die tabelle mal gemacht, bei 10 verschiedene
> möglichkeiten komme ich auf 730. aber da ich ja die ställe
> auch noch mal vertauschen kann müsste das ja dann 3650 sein
> oder?

Ich versuche mal die fragliche Tabelle ganz hinzuschreiben:
[mm]\begin{array}{ccccclcr} \text{Stall 1} & \text{Stall 2} & \text{Stall 3} & \text{Stall 4} & \text{Stall 5} & \multicolumn{3}{c}{\text{Fälle dieses Typs}}\\ 5 & 5 & 5 & 1 & 1 & \frac{5!}{3!\cdot 2!} &=& 10\\[.2cm] 5 & 5 & 4 & 2 & 1 & \frac{5!}{2!} &=& 60\\[.2cm] 5 & 5 & 3 & 3 & 1 & \frac{5!}{2!\cdot 2!} &=& 30\\[.2cm] 5 & 5 & 3 & 2 & 2 & \frac{5!}{2!\cdot 2!} &=& 30\\[.2cm] 5 & 4 & 4 & 3 & 1 & \frac{5!}{2!} &=& 60\\[.2cm] 5 & 4 & 4 & 2 & 2 & \frac{5!}{2!\cdot 2!} &=& 30\\[.2cm] 5 & 4 & 3 & 3 & 2 & \frac{5!}{3!} &=& 20\\[.2cm] 5 & 3 & 3 & 3 & 3 & \frac{5!}{4!} &=& 5\\[.2cm] 4 & 4 & 4 & 3 & 2 & \frac{5!}{3!} &=& 20\\[.2cm] 4 & 4 & 3 & 3 & 3 & \frac{5!}{2!\cdot 3!} &=& 10\\[.2cm]\cline{8-8} \multicolumn{6}{r}{\text{Total (bei Unterscheidbarkeit der fünf Ställe):}} & & 275 \end{array}[/mm]


In dieser Tabelle werden die Ställe bereits als unterscheidbar angenommen: aus diesem Grund müssen wir ja z.B. den ersten in dieser Tabelle aufgeführten Fall einer Belegung von genau drei der Ställe mit 5 und zwei Ställen mit 1 Pferd als insgesamt [mm] $\frac{5!}{3!\cdot 2!}=10$ [/mm] unterscheidbare Stallbelegungen zählen.

Wären die Ställe nicht unterscheidbar, so hätten wir effektiv nur eine einzige (unterscheidbare) Stallbelegung dieses Typs: also insgesamt nur 10 Stallbelegungen (= Anzahl Zeilen der obigen Tabelle) insgesamt.

Ob die obige Tabelle tatsächlich vollständig und richtig ausgerechnet ist, kannst Du selbst prüfen: mein Lösungsvorschlag wie immer ohne Gewähr.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de