www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - c berechnen aus Dichtefunktion
c berechnen aus Dichtefunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

c berechnen aus Dichtefunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:08 Do 10.07.2008
Autor: haddi

Hallo, verstehe diese aufgabe überhaupt nicht! wäre sehr froh wenn mir jemand helfen könnten!
Ein Budenbesitzer geht nach langer Beobachtung davon aus, dass die Zeit X (in Sekunden) zwischen dem Eintreffen zweier Kunden folgende Dichtefunktion aufweist:
      _c_         für 1 =< x =< 10
f(x)=  x³
      
       0          sonst

Berechne den Wert c?
Ermittle den Erwartungswert von X?
Wie löse ich diese Aufgabe?
Habe leider keine Ahnung wie ich da vorgehen soll, wäre sehr nett, wenn mir jemand eine Lösung oder den Weg, Schritte schicken könnte!
Mit freundlichen Grüßen
Haddi

        
Bezug
c berechnen aus Dichtefunktion: Integral lösen
Status: (Antwort) fertig Status 
Datum: 12:26 Do 10.07.2008
Autor: Loddar

Hallo haddi!


Du musst den Wert $c_$ derart bestimmen, dass gilt: [mm] $\integral_{-\infty}^{+\infty}{f(x) \ dx} [/mm] \ = \ [mm] \red{1}$ [/mm] .

Das heißt hier in Deinem Falle:
[mm] $$\integral_{1}^{10}{-\bruch{c}{x^3} \ dx} [/mm] \ = \ [mm] \red{1}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
c berechnen aus Dichtefunktion: Lösungsversuch
Status: (Frage) beantwortet Status 
Datum: 15:59 Do 10.07.2008
Autor: haddi

Hallo, was nett genau wie ich des Lösen soll, mein Lösungsversuch ist denk ich mal falsch, weil ich keine Ahnung habe wie ichs machen soll!
Vorschlag:
[mm] \integral_{1}^{10}{-c/x³ dx}=1 [/mm]
[mm] 1=\integral_{1}^{10}{-c/x³ dx} [/mm]
= c [mm] \integral_{1}^{10}{1/x³ dx} [/mm]
= c [mm] \integral_{1}^{10}{xhoch-3 dx} [/mm]
= c [mm] \integral_{1}^{10}{xhoch-3+1 *1/-3+1 dx} [/mm]
=> Obergrenze - Untergrenze
10² * -1/2 = c*(-1) [10-1]
-50 = - 9c
c = 4,5

Bezug
                        
Bezug
c berechnen aus Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 10.07.2008
Autor: schachuzipus

Hallo haddi,

> Hallo, was nett genau wie ich des Lösen soll, mein
> Lösungsversuch ist denk ich mal falsch, weil ich keine
> Ahnung habe wie ichs machen soll!
>  Vorschlag:
>  [mm]\integral_{1}^{10}{-c/x³ dx}=1[/mm]
>  [mm]1=\integral_{1}^{10}{-c/x³ dx}[/mm]
>  
> = c [mm]\integral_{1}^{10}{1/x³ dx}[/mm] [notok]

Hier ist dir ein Minuszeichen abhanden gekommen!

>  = c [mm]\integral_{1}^{10}{xhoch-3 dx}[/mm]
>  = c  [mm]\integral_{1}^{10}{xhoch-3+1 *1/-3+1 dx}[/mm]

Hier hast du doch schon integriert, was macht also das Integralzeichen noch da?

Du meinst es aber glaube ich richtig, ich interpretiere das als [mm] $c\cdot{}\left[x^{-3+1}\cdot{}\frac{1}{-3+1}\right]_1^{10}$ [/mm]

Da stimmt nur ein Vorzeichen nicht - siehe weiter oben ...

Tipp zur besseren Lesbarkeit: Exponenten kriegste mit dem Dach ^ hin, den Exponenten selbst in geschweifte Klammern setzen:

So ergibt x^{-3} [mm] $x^{-3}$ [/mm]

Brüche tippst du so ein: \bruch{1}{-3+1} ergibt [mm] $\bruch{1}{-3+1}$ [/mm]


>  => Obergrenze -

> Untergrenze
>  10² * -1/2 = c*(-1) [10-1]
> -50 = - 9c
>  c = 4,5

Da scheint mir neben dem VZF noch ein anderen Fehler drin zu stecken.

Du hast doch also Stammfunktion etwas mit [mm] $x^{-3+1}=x^{-2}=\frac{1}{x^2}$, [/mm] beim Einsetzen hast du also [mm] $\frac{1}{100}$ [/mm] usw.

Rechne nochmal nach und schreib's mal sauber auf ;-)




LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de