www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - ch. Fkt.
ch. Fkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ch. Fkt.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:55 Mo 14.06.2010
Autor: raubkaetzchen

Aufgabe
Seien [mm] (X_i)i \in \IN [/mm] stochastisch unabhängig und identisch verteilte ZV'en.
Ferner sei eine weitere, von den [mm] X_i [/mm] stochastisch unabhängige ZV'e N mit Werten in [mm] \IN [/mm] gegeben. Drücken Sie die charakteristische Fkt. von
[mm] S:=\summe_{i=1}^{N}X_i [/mm] durch die von N und [mm] X_1 [/mm] aus.

Also ich habe diese Aufgabe zwar einigermaßen gelöst, bin mir aber total unsicher bei diesem Thema und weiss deshalt nicht, ob meine Lösung bisher korrekt ist.

Also S ist meiner Auffassung nach eine ZV'e mit
S(w)= [mm] \summe_{i=1}^{N(w)} X_i(w) [/mm]

somit gilt für die ch. Funktion von S:
[mm] \psi_S(t) =E[X_i(w)]^N= [\psi_{X_i}(t)]^N [/mm]

Es fehlt noch die charakteristische Funktion von N. Man könnte einfach die ch. Funktion an 0 auswerten, das müsste den Wert 1 ergeben und dann damit multiplizieren, aber das wäre doch sicherlich nicht das gewünschte Ergebnis.
würde mich über euern Kommentar sehr freuen

Liebe Grüße

        
Bezug
ch. Fkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 16.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
ch. Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Do 17.06.2010
Autor: gfm

Ist zwar schon abgelaufen, aber ich hoffe es nützt noch...

> Seien [mm](X_i)i \in \IN[/mm] stochastisch unabhängig und identisch
> verteilte ZV'en.
>  Ferner sei eine weitere, von den [mm]X_i[/mm] stochastisch
> unabhängige ZV'e N mit Werten in [mm]\IN[/mm] gegeben. Drücken Sie
> die charakteristische Fkt. von
>   [mm]S:=\summe_{i=1}^{N}X_i[/mm] durch die von N und [mm]X_1[/mm] aus.
>  Also ich habe diese Aufgabe zwar einigermaßen gelöst,
> bin mir aber total unsicher bei diesem Thema und weiss
> deshalt nicht, ob meine Lösung bisher korrekt ist.
>  
> Also S ist meiner Auffassung nach eine ZV'e mit
>   S(w)= [mm]\summe_{i=1}^{N(w)} X_i(w)[/mm]
>  
> somit gilt für die ch. Funktion von S:
>  [mm][mm] \psi_S(t) =E[X_i(w)]^N [/mm]

Gilt nicht vielmehr [mm]\psi_{X}(t):=E(e^{itX})[/mm]?

Außerdem: [mm] \psi_S(t) [/mm] enthält [mm] \omega [/mm] nicht als Variable, Dein [mm] E[X_i(w)]^N [/mm] aber schon. Du kannst N nicht aus der Erwartungswertbildung herausziehen.

Es ist [mm] \Omega=\cup_{n\in\IN}A_n= [/mm] mit den disjunkten [mm] A_n:=\{N=n\}. [/mm] Damit ist [mm] \psi_S(t)=\summe_{n\in\IN}E\Big(1_{A_n}*\produkt_{k=1}^ne^{itX_k}\Big) [/mm]

Wenn Du [mm] \psi_{N}(t)=\summe_{n\in\IN}p_ne^{int} [/mm] mit [mm] p_n:=P(A_n) [/mm] berücksichtigst und später [mm] p_k [/mm] mit einer Rücktransformation von [mm] \psi_{N}(t) [/mm] darstellst, sollte das Ausnutzen der Unabhängigkeit zum Ziel führen.

LG

gfm


Bezug
                
Bezug
ch. Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Do 17.06.2010
Autor: Gonozal_IX

Huhu,

jo tut es. Ich hatte die Frage leider auch jetzt erst gesehen, denn nu musste sie es schon abgeben.

MFG,
Gono.

Bezug
                        
Bezug
ch. Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Do 17.06.2010
Autor: gfm


> Huhu,
>  
> jo tut es. Ich hatte die Frage leider auch jetzt erst

Danke.

> gesehen, denn nu musste sie es schon abgeben.

Och, schade.

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de