www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - charakteristisches Polynom
charakteristisches Polynom < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Di 24.07.2007
Autor: Race

Hallo!

Ich habe eine Frage zur Berechnung des charakteristischen Polynoms.
Die Berechnung mit der Säkulargleichung, also [mm] \chi(\lambda)=\det(C-\lambda*E) [/mm] ist mir klar, aber man kann das char. Polynom ja noch folgendermaßen berechnen:
[mm] \chi(\lambda)=(-1)^n*\lambda^n+(-1)^{n-1}*sp(C)*\lambda^{n-1}+...+\det(C) [/mm]
wobei sp(C)=spur(C) die Aufsummation der Diagonalelemente der Matrix C ist.
Ich verstehe bei dieser Formel das System aber nicht ganz. Wie komme ich auf den Zusammenhang zwischen Spur und Determinante, und was würde ich bei den Gliedern zwischen den oben angegebenen als diesen Faktor nehmen?
Es wäre super, wenn mir jemand helfen könnte!

lg Ines

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
charakteristisches Polynom: Lösung
Status: (Antwort) fertig Status 
Datum: 16:15 Di 24.07.2007
Autor: MarthaLudwig

Hallo Race!

Entwickle die Determinante,die zum Polynom gehört, nach irgendeine Zeile oder Spalte;
Spur(C)=Summe der cii;
det(C);
Vergleiche die entsprechenden Terme.

Noch ein Buch Tipp:Höhrere Mathematik Band 1 von Mayberg.Vachenauer.

Hoffe,daß ich helfen konnte.

Grüße Martha.


Bezug
        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 24.07.2007
Autor: angela.h.b.


>  Die Berechnung mit der Säkulargleichung, also
> [mm]\chi(\lambda)=\det(C-\lambda*E)[/mm] ist mir klar, aber man kann
> das char. Polynom ja noch folgendermaßen berechnen:
>  
> [mm]\chi(\lambda)=(-1)^n*\lambda^n+(-1)^{n-1}*sp(C)*\lambda^{n-1}+...+\det(C)[/mm]
>  wobei sp(C)=spur(C) die Aufsummation der Diagonalelemente
> der Matrix C ist.
>  Ich verstehe bei dieser Formel das System aber nicht ganz.
> Wie komme ich auf den Zusammenhang zwischen Spur und
> Determinante, und was würde ich bei den Gliedern zwischen
> den oben angegebenen als diesen Faktor nehmen?

Hallo,

[willkommenmr].

Der von Dir angegebene Zusammenhang ist eine Folgerung aus [mm] \chi(\lambda)=\det(C-\lambda*E), [/mm] keine Bauanleitung fürs charakteristische Polynom.

Wie von MarthaLudwig erwähnt kannst Du diesen Zusammenhang erhalten, wenn Du die entsprechende Determinante ausrechnest.
Diese Informationen dienen eher nicht dazu, das charakteristische Polynom auszurechnen.

Aber wenn Du das charakteristische Polynom einer Matrix A vorliegen hast, kennst Du mit der Information [mm] a_0=(-1)^ndet(A) [/mm] automatisch die Determinante der betreffenden Matrix.

Die Information [mm] a_{n-1}=-Spur(A) [/mm] ist auch interessant: die Spur ist nämlich nicht nur die Summe der Diagonalelemente, sondern auch die Summe der Eigenwerte. Hier ergibt sich eine Kontrollmöglichkeit dafür, ob man die Eigenwerte der Matrix richtig berechnet hat.

Gruß v. Angela

Bezug
                
Bezug
charakteristisches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Di 24.07.2007
Autor: Race

Vielen Dank euch beiden!

Dann hab ich da wohl was missverstanden, wenn das keine Berechnungsanleitung sondern eine Folgerung ist, ist alles klar.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de