www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - charakteristisches Polynom
charakteristisches Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 27.08.2007
Autor: pusteblume86

Ich habe folgende Frage:

Mir ist gerade aufgefallen, dass in meinem Script steht: charPol(x) = [mm] (-1)^n [/mm] det(A- [mm] \lambda E_n) [/mm] und in den Büchern häufig: charPol(x)= det( [mm] \lambda E_n [/mm] -A)

Diese Beiden stehen ja folgendermaßen in Zusammenhang: det( [mm] \lambda E_n [/mm] -A)=det(-1( A - [mm] \lambda E_n [/mm] )) = [mm] (-1)^n [/mm] det (A - [mm] \lambda E_n [/mm] ) wegen Eigenschaften der Determinante

Aber ich bin mir sicher, dass wir in der Schule immer einfach :  det (A - [mm] \lambda E_n [/mm] ) ausgerechnet haben und das in manchen Büchern ebenfalls so steht.. wisst ihr warum das so ist? Stimmen beide?


LG Sandra

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 27.08.2007
Autor: angela.h.b.


> Stimmen beide?

Hallo,

beide Definitionen sind gebräuchlich:

[mm] det(\lambda [/mm] E - A) und det(A - [mm] \lambda [/mm] E) [mm] (=(-1)^ndet(\lambda [/mm] E - A)).

Gruß v. Angela

Bezug
                
Bezug
charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mo 27.08.2007
Autor: pusteblume86

Und es kommt dann trotzdem dasselbe heraus??

Bezug
                        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Mo 27.08.2007
Autor: angela.h.b.


> Und es kommt dann trotzdem dasselbe heraus??

Ja.

Am charakteristischen Polynom interessieren ja die Nullstellen (Eigenwerte) und deren Vielfachheit.

Das ist in beiden Fällen gleich, denn das schlimmste, was passieren kann (nämlich bei ungeradem n), ist, daß das charakteristische Polynom der einen Definition gleich minus dem charakteristischen Polynom der anderen Definition ist.

Es ist egal, ob Du die Nullstellen von [mm] (x-1)(x-2)^2(x-3) [/mm] oder von [mm] -(x-1)(x-2)^2(x-3) [/mm] bestimmst.

Gruß v. Angela

Bezug
                                
Bezug
charakteristisches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 27.08.2007
Autor: pusteblume86

Jo das ist richtig!!

Danke für die schnelle Antwort!!!

Lg sandra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de