www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - cosh ungleichung
cosh ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cosh ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Fr 05.08.2011
Autor: Denny22

Hallo an alle,

hat jemand eine Idee, wie ich die Ungleichung

     [mm] $\cosh^p(|x|)\leqslant \cosh(p|x|)$, $p\in\IR$ [/mm] mit [mm] $p\geqslant [/mm] 1$

zeigen kann?

Danke bereits im Vorraus.

        
Bezug
cosh ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Fr 05.08.2011
Autor: DM08

Zeige die Ungleichung für [mm] p\in\IQ [/mm] mit [mm] p\ge [/mm] 1

Aufgrund der Dichtheit und der Stetigkeit gilt es dann auch auf [mm] \IR. [/mm]

MfG

Bezug
        
Bezug
cosh ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Fr 05.08.2011
Autor: Leopold_Gast

Du könntest die Funktion [mm]f[/mm] mit

[mm]f(x) = \frac{\cosh^p x}{\cosh(px)} \, , \ \ x \geq 0[/mm]

untersuchen.

1. Berechne [mm]f(0)[/mm].

2. Berechne [mm]f'(x)[/mm] und zeige, daß für [mm]x>0[/mm] gilt: [mm]f'(x) < 0[/mm].

(Hinweis: Additionstheorem [mm]\sinh(u-v) = \sinh u \cdot \cosh v - \cosh u \cdot \sinh v[/mm] )

Folgerung aus 1. und 2. ?

Bezug
                
Bezug
cosh ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Sa 06.08.2011
Autor: Denny22


> Du könntest die Funktion [mm]f[/mm] mit
>  
> [mm]f(x) = \frac{\cosh^p x}{\cosh(px)} \, , \ \ x \geq 0[/mm]
>  
> untersuchen.
>  
> 1. Berechne [mm]f(0)[/mm].
>
> 2. Berechne [mm]f'(x)[/mm] und zeige, daß für [mm]x>0[/mm] gilt: [mm]f'(x) < 0[/mm].
>  
> (Hinweis: Additionstheorem [mm]\sinh(u-v) = \sinh u \cdot \cosh v - \cosh u \cdot \sinh v[/mm]
> )
>  
> Folgerung aus 1. und 2. ?

Okay, wir wollen zeigen, dass die Funktion $f$ in [mm] $x\geqslant [/mm] 0$ monoton fallend ist. Dazu zeigen wir
     [mm] $f'(x)\leqslant [/mm] 0$ für [mm] $x\geqslant [/mm] 0$
daraus folgt dann
     [mm] $f(x)\leqslant [/mm] f(0)=1$
Multiplikation mit [mm] $\cosh(px)$ [/mm] liefert dann meine Behauptung.

Ich verstehe bei Deinem Hinweis nur nicht, wie Du das Additionstheorem angewendet hast: Die Ableitung erhalten wir durch Quotientenregel (und Produktregel):
     [mm] $f'(x)=\frac{p\cdot \left(\cosh^{p-1}(x)\sinh(x)-\cosh^p(x)\sinh(px)\right)}{\cosh^2(px)}$ [/mm]
Wie genau zeige ich nun (mit Hilfe des Additionstheorems) [mm] $f'(x)\leqslant [/mm] 0$?

Vielen Dank

Bezug
                        
Bezug
cosh ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Sa 06.08.2011
Autor: Leopold_Gast

Du kannst im Zähler [mm]\cosh^{p-1} x[/mm] ausklammern.

EDIT
Du hast die Ableitung falsch berechnet. Rechne noch einmal nach.

Bezug
                        
Bezug
cosh ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 06.08.2011
Autor: DM08

z.z.: [mm] $f'(x)=\frac{p\cdot \left(\cosh^{p-1}(x)\sinh(x)-\cosh^p(x)\sinh(px)\right)}{\cosh^2(px)}<0\gdw [/mm] x>0$

Wieso willst du zeigen, dass [mm] $f'(x)\le [/mm] 0$ gilt ?

[mm] $\cosh(x)\ge [/mm] 1>0\ [mm] \forall x\in\IR$ \Rightarrow [/mm] Untersuchung des [mm] \sinh(x) [/mm]
[mm] $\sinh(x)>0\gdw [/mm] x>0\ [mm] \forall x\in\IR$ [/mm]
[mm] $\sinh(x)<0\gdw [/mm] x<0\ [mm] \forall x\in\IR$ [/mm]
[mm] $\sinh(x)=0\gdw [/mm] x=0$

[mm] $f'(x)=\frac{p\cdot \left(\cosh^{p-1}(x)\sinh(x)-\cosh^p(x)\sinh(px)\right)}{\cosh^2(px)}=\bruch{p(\bruch{\cosh^p(x)}{\cosh(x)}\sinh(x)-\cosh^p(x)\sinh(px))}{\cosh^2(px)} [/mm]

Jetzt kannst du [mm] \cosh^p(x) [/mm] ausklammern im Nenner.
Außerdem mit den Additionstheoremen vom  [mm] \sinh(x) [/mm] und [mm] \cosh(x) [/mm] weiter kürzen.

[mm] \sinh(x+y)=\sinh(x)\cosh(y)+\sinh(y)\cosh(x) [/mm]
[mm] \cosh(x+y)=\cosh(x)\cosh(y)+\sinh(x)\sinh(y) [/mm]

MfG


Bezug
        
Bezug
cosh ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Sa 06.08.2011
Autor: fred97

Die Funktion [mm] f(t):=t^p [/mm] ist auf [0, [mm] \infty) [/mm] konvex, also gilt

              [mm] f(\bruch{a+b}{2}) \le \bruch{f(a)+f(b)}{2} [/mm]   für alle a,b [mm] \ge [/mm] 0

Setzte mal [mm] a=e^x [/mm] und [mm] b=e^{-x} (x\ge [/mm] 0)

FRED

Bezug
                
Bezug
cosh ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Sa 06.08.2011
Autor: Denny22

Vielen Dank an alle für die Antworten. Das Problem ist nun gelöst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de