www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - darstellung der Einträge matri
darstellung der Einträge matri < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

darstellung der Einträge matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Fr 27.01.2012
Autor: EvelynSnowley2311

Aufgabe
die konugiert-transponierte Matrix C* einer Matrix C mit komplexen Einträgen [mm] C_{ij} [/mm] ist definiert durch [mm] c_{ji} [/mm] * = [mm] \overline{C_{ij}} [/mm] . Seien m,n,p [mm] \in \IN [/mm] und A [mm] \in \IC^{m x n} [/mm] , B [mm] \in \IC^{n x p} [/mm] . Zeigen Sie, dass

(AB)* = B*A*

huhu, eine alte Übungsaufgabe von mir die ich nochma durchgehen möchte.

Die Einträge von einer Matrix [mm] \IC_{ji} [/mm] kann man so darstellen oder?

[mm] \summe_{k=j,i}^{n} a_{ji} \* \IC_{ji} [/mm]

        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 28.01.2012
Autor: fred97


> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass
>
> (AB)* = B*A*
>  huhu, eine alte Übungsaufgabe von mir die ich nochma
> durchgehen möchte.
>  
> Die Einträge von einer Matrix [mm]\IC_{ji}[/mm] kann man so
> darstellen oder?
>  
> [mm]\summe_{k=j,i}^{n} a_{ji} \* \IC_{ji}[/mm]  

Was da oben steht ist völliger Unsinn !

Eine Matrix C hat die Darstellung $C=( [mm] c_{ji} [/mm] )$

"Kreuze" die j-te Zeile mit der i-ten Spalte: dort steht der Eintrag $ [mm] c_{ji} [/mm] $

FRED


Bezug
        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Sa 28.01.2012
Autor: Al-Chwarizmi


> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass
>
> (AB)* = B*A*
>  huhu, eine alte Übungsaufgabe von mir die ich nochma
> durchgehen möchte.
>  
> Die Einträge von einer Matrix [mm]\IC_{ji}[/mm] kann man so
> darstellen oder?
>  
> [mm]\summe_{k=j,i}^{n} a_{ji} \* \IC_{ji}[/mm]  


Hallo,

du machst hier ein Durcheinander mit den verschiedenen "C" ,
die hier vorkommen: einerseits die Grundmenge [mm] \IC [/mm] der
komplexen Zahlen, aus welcher die Elemente der Matrizen
stammen, und dann die Matrizen C und [mm] C^{\ast}. [/mm] Mein
Vorschlag: Schreibe für das Matrixprodukt M anstatt C, also

    $\ M:=A*B$

    $\  [mm] M^{\ast}\ [/mm] :=\ [mm] \overline{M}^T$ [/mm]

    $\  [mm] M^{\ast}_{j\,i}\ [/mm] :=\ [mm] \overline{M_{i\,j}}$ [/mm]

(Bemerkung: beim Schreiben solcher Ausdrücke habe ich
auch ein wenig Mühe mit den $\ T_EX$ - Symbolen, insbe-
sondere mit den hochgestellten Sternchen ...)

LG



Bezug
                
Bezug
darstellung der Einträge matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Sa 28.01.2012
Autor: EvelynSnowley2311

hey

alle schön und gut, wenn meine Darstellung falsch ist, wie stellt mans richtig da? in der Musterlösung hatten wir was halt mit Summenzeichen gemacht.

Bezug
                        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Sa 28.01.2012
Autor: Al-Chwarizmi


> hey
>  
> alle schön und gut, wenn meine Darstellung falsch ist, wie
> stellt mans richtig da? in der Musterlösung hatten wir was
> halt mit Summenzeichen gemacht.

Klar, in der Berechnung des Produkts kommen dann
natürlich Summen vor:

> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass

>     (AB)* = B*A*


    $\ M:=A*B$

    $\  [mm] M^{\ast}\ [/mm] :=\ [mm] \overline{M}^T$ [/mm]

    [mm] $\mbox{\huge {\text{\rm{ M}}_{j\,i}^{\ast}\ :=\ \overline{M_{i\,j}}\ =\ \overline{\summe_{k=1}^{n}A_{ik}*B_{kj}}}}$ [/mm]

So, nun kann man darauf einmal die Regeln für die
Konjugation anwenden.
Nachher  $\ [mm] B^{\ast}*A^{\ast}$ [/mm]  hinschreiben und ebenfalls
umformen, bis man für beide Rechnungen dasselbe
Ergebnis hat ...

LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de