darstellungen durch faktorgr. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] n\in \IN [/mm] und [mm] d\in \IN [/mm] ein Teiler von n.Sei G eine endliche, abelsche Gruppe mit Mächtigkeit n. Es bezeichne [mm] \omega_{d} [/mm] eine primitive d-te Einheitswurzel. Sei K ein Körper der alle Potenzen von [mm] \omega_{d} [/mm] enthält. Sei [mm] N\le [/mm] G, sodass G/N zyklisch mit Mächtigkeit d ist. Seien Nx, Ny Ergeuger von G/N mit [mm] Nx\not=Ny. [/mm]
Sei [mm] z\in [/mm] {x,y} und [mm] g\in [/mm] G, dann ex. [mm] k\in [/mm] {0,...,d-1}, so dass [mm] Ng=Nz^{k}. [/mm] Definier folgende Darstellung:
[mm] \delta_{z}:G/N\to GL_{K}K, Ng=Nz^{k} \mapsto (c\mapsto c*\omega_{d}^{k} [/mm] ) für alle [mm] c\in [/mm] K .
Beh.: [mm] \delta_{x} [/mm] und [mm] \delta_{y} [/mm] sind nicht äquivalent. |
Hallo Leute,
ich komme bei dieser Aufgabe einfach nicht weiter. Ich versuche einen Widerspruchsbeweis, indem ich anneheme es gäbe einen Modulisimorphismus f vom Modul [mm] (K;\delta_{x}) [/mm] zu [mm] (K;\delta_{y}), [/mm] aber ein Widerspruch will mir einfach nicht gelingen. Wäre super, wenn mir jemand helfen könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:24 Di 04.11.2008 | Autor: | felixf |
Hallo!
> Sei [mm]n\in \IN[/mm] und [mm]d\in \IN[/mm] ein Teiler von n.Sei G eine
> endliche, abelsche Gruppe mit Mächtigkeit n. Es bezeichne
> [mm]\omega_{d}[/mm] eine primitive d-te Einheitswurzel. Sei K ein
> Körper der alle Potenzen von [mm]\omega_{d}[/mm] enthält. Sei [mm]N\le[/mm]
> G, sodass G/N zyklisch mit Mächtigkeit d ist. Seien Nx, Ny
> Ergeuger von G/N mit [mm]Nx\not=Ny.[/mm]
> Sei [mm]z\in[/mm] {x,y} und [mm]g\in[/mm] G, dann ex. [mm]k\in[/mm] {0,...,d-1}, so
> dass [mm]Ng=Nz^{k}.[/mm] Definier folgende Darstellung:
> [mm]\delta_{z}:G/N\to GL_{K}K, Ng=Nz^{k} \mapsto (c\mapsto c*\omega_{d}^{k}[/mm]
> ) für alle [mm]c\in[/mm] K .
> Beh.: [mm]\delta_{x}[/mm] und [mm]\delta_{y}[/mm] sind nicht äquivalent.
>
> Hallo Leute,
> ich komme bei dieser Aufgabe einfach nicht weiter. Ich
> versuche einen Widerspruchsbeweis, indem ich anneheme es
> gäbe einen Modulisimorphismus f vom Modul [mm](K;\delta_{x})[/mm] zu
> [mm](K;\delta_{y}),[/mm] aber ein Widerspruch will mir einfach nicht
> gelingen. Wäre super, wenn mir jemand helfen könnte.
Wann sind zwei Darstellungen $G/N [mm] \to GL_K [/mm] K$ denn aequivalent? Bedenke, dass [mm] $GL_K [/mm] K$ die multiplikative Gruppe des Koerpers ist.
Wenn du das hast, betrachte einfach das Bild von $N x$ unter [mm] $\delta_x$ [/mm] und [mm] $\delta_y$.
[/mm]
LG Felix
|
|
|
|
|
Erstmal vielen Dank für den Tipp, aber ich hab dazu noch eine Frage. Woher weiß ich, das [mm] GL_{K}K [/mm] enthalten in einem Körper ist? Liegt das daran, dass G/N abelsch ist und somit das Bild in einer Divisionsalgebra liegt, die, da G/N ablelsch selbst ein Körper ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:32 Di 04.11.2008 | Autor: | felixf |
Hallo
> Erstmal vielen Dank für den Tipp, aber ich hab dazu noch
> eine Frage. Woher weiß ich, das [mm]GL_{K}K[/mm] enthalten in einem
> Körper ist? Liegt das daran, dass G/N abelsch ist und somit
> das Bild in einer Divisionsalgebra liegt, die, da G/N
> ablelsch selbst ein Körper ist?
Das hat doch mit der Darstellung nichts zu tun. Schau dir [mm] $GL_K [/mm] K$ selber an. Was ist das ueberhaupt? Vielleicht solltest du dir das erstmal ueberlegen...
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:28 Mi 05.11.2008 | Autor: | ichbinsnun |
Das ist wohl war. So ist es dann auch klar, vielen dank
|
|
|
|