www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - definitheit
definitheit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 05.02.2011
Autor: m4rio

Aufgabe
[mm] \(B=\pmat{ 1 & 1 \\ 1 & 1 } [/mm]

hallo,

kleine verständnisfrage an dieser stelle

Eigenwerte

[mm] \((1-\lambda)^2-1=0 [/mm]

[mm] \(\lambda^2-2\lambda=0 [/mm]

[mm] \(1\pm\wurzel{4} [/mm]

[mm] \lambda1=3 [/mm]

[mm] \lambda2=-1 [/mm]




BEi der untersuchung der definitheit steht allerdings nicht hierzu im sript..

nur Eigenwerte: größer, kleiner - 0 / großer-gleich, kleiner-gleich 0

was ist wenn ein eigenwert im negatven bereich und einer im positiven liegt... hab ich mcih dann verrechnet :D?

        
Bezug
definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 05.02.2011
Autor: pyw

Hi,
> [mm]\(B=\pmat{ 1 & 1 \\ 1 & 1 }[/mm]
>  hallo,
>
> kleine verständnisfrage an dieser stelle
>  
> Eigenwerte
>
> [mm]\((1-\lambda)^2-1=0[/mm]
>  
> [mm]\(\lambda^2-2\lambda=0[/mm]
>  
> [mm]\(1\pm\wurzel{4}[/mm]
>  
> [mm]\lambda1=3[/mm]
>  
> [mm]\lambda2=-1[/mm]

Nein, die Nullstellen von [mm] p_B(\lambda)=\lambda^2-2\lambda=\lambda(\lambda-2) [/mm] sind [mm] \lambda_1=0 [/mm] und [mm] \lambda_2=2. [/mm]

>  
>
>
>
> BEi der untersuchung der definitheit steht allerdings nicht
> hierzu im sript..
>
> nur Eigenwerte: größer, kleiner - 0 / großer-gleich,
> kleiner-gleich 0

Wie genau habt ihr Definitheit eingeführt?
Es gilt:
[mm] \vektor{a&b}\pmat{ 1 & 1 \\ 1 & 1 }\vektor{a\\b}=(a+b)^2\geq [/mm] 0
Damit wäre für mich die durch B angebene Bilinearform positiv (semi-)definit.

>  
> was ist wenn ein eigenwert im negatven bereich und einer im
> positiven liegt... hab ich mcih dann verrechnet :D?

Das ist durchaus möglich, auch wenn du dich hier ein bisschen verrechnet hast ;-)

mfg, pyw


Bezug
                
Bezug
definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Sa 05.02.2011
Autor: m4rio

ohman, ausklammern wäre natürlich schneller gewesen... sehe jetzt auch den fehler bei der PQ formel...


hat sich geklärt, danke !


gleich ncoh eine aufgabe.. komme mit den voreichen immer durcheinander...

und wenn es gemische vorzeicen gibt, ist es indefinit ...


gleich eine hinterher..
[mm] \\pmat{ 1 & 1 \\ 1 & -1 } [/mm]

wenn ichs über die eigenwerte bestimmen mäöchte..


[mm] \((1-\lambda)*(-1-\lambda)-(-1)=0 [/mm]

[mm] \(lambda^2-1)-(-1)=0 [/mm]

[mm] \lambda^2=0 [/mm]

???

[mm] \lambda1/2=0 [/mm] ?







Bezug
                        
Bezug
definitheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Sa 05.02.2011
Autor: pyw

Hi,

es wäre schön, wenn du die Formel-Fehler im Artikel ausbessern könntest. Dann kann dir vielleicht auch jemand helfen.

Gruß, pyw

Bezug
                        
Bezug
definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 05.02.2011
Autor: angela.h.b.


> ohman, ausklammern wäre natürlich schneller gewesen...
> sehe jetzt auch den fehler bei der PQ formel...
>
>
> hat sich geklärt, danke !
>  
>
> gleich ncoh eine aufgabe.. komme mit den voreichen immer
> durcheinander...
>  
> und wenn es gemische vorzeicen gibt, ist es indefinit ...
>  
>
> gleich eine hinterher..
>  [mm]\pmat{ 1 & 1 \\ 1 & -1 }[/mm]
>  
> wenn ichs über die eigenwerte bestimmen mäöchte..
>  
>
> [mm]\((1-\lambda)*(-1-\lambda)-(-1)=0[/mm]

Hallo,

das charakteristische Polynom ist nicht richtig.

Es muß

[mm] (1-\lambda)(-1-\lambda)-1=0 [/mm]

heißen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de