www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - dezimalzahlen in brüche umwand
dezimalzahlen in brüche umwand < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dezimalzahlen in brüche umwand: brüche
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 12.05.2010
Autor: manfreda

Aufgabe
0.83333333333... in bruch umwandeln


ich kriege es nicht hin solche zahlen ,unendlich viel stellen haben in einen bruch umzuwandeln

vielleicht weiss ja jemand wie man das mit dem taschenrechner "texas
instruments TI 30X macht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
dezimalzahlen in brüche umwand: Nimm keinen Taschenrechner
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 12.05.2010
Autor: karma

Hallo und guten Tag,

die Aufgabe ist hinreichend einfach - nimm keinen Taschenrechner.

[mm] $0.83333333333\ldots\ [/mm] =\ 0.8\ +\ [mm] 0.03333333333\ldots\ [/mm] =\ [mm] \frac{4}{5}+\frac{1}{10}\cdot\frac{1}{3}\ [/mm] =\ [mm] \frac{24}{30}+\frac{1}{30}\ [/mm] =\ [mm] \frac{25}{30}\ [/mm] =\ [mm] \frac{5}{6}$ [/mm]

Schönen Gruß
Karsten


Bezug
                
Bezug
dezimalzahlen in brüche umwand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mi 12.05.2010
Autor: abakus


> Hallo und guten Tag,
>  
> die Aufgabe ist hinreichend einfach - nimm keinen
> Taschenrechner.
>  
> [mm]0.83333333333\ldots\ =\ 0.8\ +\ 0.03333333333\ldots\ =\ \frac{4}{5}+\frac{1}{10}\cdot\frac{1}{3}\ =\ \frac{24}{30}+\frac{1}{30}\ =\ \frac{25}{30}\ =\ \frac{5}{6}[/mm]
>  
> Schönen Gruß
>  Karsten

Hallo,
noch überschaubarer (für meine Begriffe) ist
0,833333... = 0,5+0,33333...
Gruß Abakus

>  


Bezug
        
Bezug
dezimalzahlen in brüche umwand: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 12.05.2010
Autor: gfm

Sei [mm] z\in\IQ [/mm] gegeben mit

[mm] z=G+\summe_{i=1}^k z_i 10^{-i}+\summe_{j=0}^{\infty}10^{-jp}\summe_{i=k+1}^{k+p} z_i 10^{-i} [/mm]

wobei [mm] G\in\IN [/mm] den ganzahlige Teil, die erste Summe (verschwindet wenn k=0) die ersten [mm] k\in\IN_0 [/mm] nichtperiodischen Nachkommastellen, die zweite eine Periode von [mm] p\in\IN_0 [/mm] und die [mm] z_i [/mm] die entsprechenden Ziffern bezeichnet.

Dann ist

[mm] z=G+\summe_{i=1}^k z_i 10^{-i}+\frac{1}{1-10^{-p}}\summe_{i=k+1}^{k+p} z_i 10^{-i}=G+\summe_{i=1}^k z_i 10^{-i}+\frac{10^p}{10^p-1}\summe_{i=k+1}^{k+p} z_i 10^{-i} [/mm]

[mm] =n+\summe_{i=1}^k z_i 10^{-i}+\frac{10^p}{10^p-1}10^{-k}\summe_{i=1}^{p} z_{i+k} 10^{-i}=G+\frac{10^k}{10^k}\summe_{i=1}^k z_i 10^{-i}+\frac{10^{p-k}}{10^p-1}\frac{10^p}{10^p}\summe_{i=1}^{p} z_{i+k} 10^{-i} [/mm]

[mm] =G+\frac{1}{10^k}\summe_{i=1}^k z_i 10^{k-i}+\frac{10^{p-k}}{10^p-1}\frac{1}{10^p}\summe_{i=1}^{p} z_{i+k} 10^{p-i}=G+\frac{\summe_{i=1}^k z_i 10^{k-i}}{10^k}+\frac{\summe_{i=1}^{p} z_{i+k} 10^{p-i}}{10^p-1}\frac{1}{10^k} [/mm]

Dieser Ausdruck besteht jetzt nur noch aus ganzen Zahlen oder Brüchen mit solchen.

Zur praktischen Anwendung schreibst Du das in der Form

[mm] G+\frac{K}{10^k}+\frac{P}{(10^p-1)10^k} [/mm]

wobei G der ganzzahlige Vorkommateil der Ausgangszahl, K der als ganze Zahl geschriebene Teil der k Nachkommastellen, die nicht periodisch sind und P die als ganze Zahl geschriebene Periode der Länge p ist.

Beispiel:

[mm] 9,25\overline{108}=9+\frac{25}{100}+\frac{108}{999*100}=9+1/4+1/925=34229/3700 [/mm]

LG

gfm





Bezug
                
Bezug
dezimalzahlen in brüche umwand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 12.05.2010
Autor: manfreda

Haallo

ich danke euch vielmaals!!!!!!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de